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Abstract

We present a novel Java-based program denominated PeptiDesCalculator for com-

puting peptide descriptors. These descriptors include: redefinitions of known protein

parameters to suite the peptide domain, generalization schemes for the global

descriptions of peptide characteristics, as well as empirical descriptors based on

experimental evidence on peptide stability and interaction propensity. The

PeptiDesCalculator software provides a user-friendly Graphical User Interface (GUI)

and is parallelized to maximize the use of computational resources available in cur-

rent work stations. The PeptiDesCalculator indices are employed in modeling 8 pep-

tide bioactivity endpoints demonstrating satisfactory behavior. Moreover, we

compare the performance of a support vector machine (SVM) classifier built using

15 PeptiDesCalculator indices with that of a recently reported deep neural network

(DNN) antimicrobial activity classifier, demonstrating comparable test set perfor-

mance notwithstanding the remarkably lower degree of freedom for the former. This

software will facilitate the development of in silico models for the prediction of pep-

tide properties.
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1 | INTRODUCTION

Over the past two decades, peptide drug discovery (PDD) has experi-

enced renewed interest and momentum, thanks to the greater appre-

ciation of the possible utility of peptides in addressing unmet clinical

conditions and/or as better alternatives to small molecule therapeu-

tics. Concurrently, the remarkable advancement of recombinant bio-

logics in the recent years has rendered the high-throughput synthesis

of macromolecules into a routine and cost-effective process, further

contributing to the renaissance of PDD.1

Peptides, defined as macromolecules composed of 2-50 amino

acids, will probably attract increasing interest in the coming decades.

Their advantages include: high specificity and activity, easy

degradation, do not yield toxic metabolites, and may be reutilized by

the organism instead of being converted into waste products.1,2 This

implies that they generally possess reduced toxicity and few second-

ary effects. Indeed, the number of commercially available therapeutic

peptides has in the last decades progressively increased (about 68 cur-

rently approved in the EU),3 covering multiple clinical applications

such as antineoplastics, antivirals, antifungals, antibiotics, modulators

of the immune, cardiovascular, and nervous systems, in addition to

their utility in diagnosis.

Notwithstanding the benefits of peptide-based therapy, the

translation of promissory peptides into clinical therapeutics continues

to be a challenge due to their inherent bio- and physicochemical prop-

erties, that is, are water-soluble and hence generally exhibit limited
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capacity to diffuse across biomembranes such as the gastrointestinal

epithelium, are biologically unstable as they are rapidly metabolized

by human proteolytic enzymes and thus yielding short plasma half-

lives. Consequently, peptides are generally administered through

injections, often several times a day, in detriment of patients' compli-

ance and convenience.3

The ultimate and long sought after goal is to achieve orally admin-

istrable therapeutic peptides. Nonetheless, this will require PDD para-

digms that integrate comprehensive analyses of bioactivity,

pharmacodynamic, pharmacokinetic, and toxicological profiles of pep-

tides in different phases of the PDD. Such workflows will allow for

the design of peptides not only with favorable therapeutic efficacy,

but also ensure their adequate bioavailability and administration.

In the path towards this goal, computational tools customized for

predictive peptide modeling will be crucial, particularly in the context

of the analysis of the existing experimental evidence to offer infer-

ences on possible peptide bioactivity profiles. The utility of in silico

tools in accelerating and optimizing drug discovery has long been rec-

ognized.4 Moreover, the recent advances in machine learning algo-

rithms and computing technology offer an opportunity to incorporate

the state-of-the art computational techniques in PDD workflows.

As maybe anticipated, successful in silico predictive modeling

requires adequate characterization of compositional, chemical and

physicochemical attributes of peptide molecules. However, from our

extensive review of the literature we noted that while there is soft-

ware for calculating descriptors for small molecules and proteins,

there is no equivalent software particularly customized for peptide

descriptor calculation, as macromolecules at the interface of small

organic molecules and proteins. Usually, research groups build in-

house scripts to compute descriptors from peptide sequences and

amino acid properties or utilize the “Peptides package” of the R pro-

gramming language which provides 10 structural characteristics for

antimicrobial peptides.5-9

Recently, there have been attempts to employ small molecule

descriptor programs (eg, Dragon, PaDEL, CoMFA) to build peptide bio-

activity models but these have been limited to short lengths peptides,

that is, less than 10 amino acids and mainly di-, tri-, and tetrapeptides

probably due to the prohibitive computational cost of applying small

molecule software.10,11 Considering that in the last decade average

length of peptides entering clinical development is of 20 amino acids,3

it is clear that the chemical space covered by these models is narrow.

Additionally, in a recent study an effort to consider diverse lengths

yielded rather modest correlations, that is, R2 < 0.56,12 below the rec-

ommended limit of acceptability.13 There is clearly a need for a user-

friendly descriptor computing software customized for peptides.

On the other hand, while it is plausible that protein descriptors

may be adopted as alternatives, these seem not to have gained trac-

tion in modeling of peptide bioactivity endpoints, probably because

some protein descriptors may be redundant (eg, popular sequence

autocorrelation indices, defined to consider up to 30 lag values, would

be redundant for short length peptides). Moreover, important protein

descriptors such as the solvent accessible surface area, would not

make much sense for short lengths peptide sequences.

We present herein, a user-friendly and cross-platform java-based

software denominated PeptiDesCalculator for computing descriptors

for peptide molecules. The following contributions may be

highlighted: (a) we have collected and reimplemented existent

sequence based protein descriptors, normalized and/or truncated to

suite the peptide domain, (b) applied aggregation operators that gen-

eralize the traditional approach of the summation of the amino acid

contributions to obtain global peptide descriptions,14-19 (c) selected

the most orthogonal physicochemical, biochemical and topological

amino acid indices from the amino acid index database and the

literature,20,21 using the cluster analysis method, and incorporated in

the aforementioned descriptor and generalization schemes,

(d) provided a Graphical User Interface (GUI) to allow for the quick

and straightforward descriptor computation by both experts and non-

experts, (e) parallelized the peptide descriptor computation to maxi-

mize the computation power available in state-of-the art work

stations, (f) a standalone version is provided instead of exclusive reli-

ance on web platforms which present several limitations such as long

queuing times, overwhelmed computational resources (users may not

use private computing resources), or web disruptions, among others.

2 | MATERIALS AND METHODS

2.1 | Molecular descriptors for peptides

The following descriptors have been implemented in the

PeptiDesCalculator software:

1. Compositional descriptors, which include the amino acid, dipep-

tide and tripeptide sequence composition.

2. Composition transition and distribution, descriptors as proposed

by Dubchak et al.22 These descriptors characterize the global com-

position of given amino acid properties, the frequency with which

these properties vary along the peptide sequences, and the

corresponding property distribution patterns.22 Taking hydropho-

bicity as an example, the amino acids may be classified as hydro-

phobic, neutral, and polar, respectively. For a given peptide

sequence, the composition descriptors are defined as percentages

for each class of amino acids. On the other hand, the transition

descriptors are defined as percentages of the frequency with

which an amino acid in one class is followed by another from a dif-

ferent class, that is, hydrophobic followed by neutral (or neutral

followed by hydrophobic), polar followed by hydrophobic

(or hydrophobic followed by polar) and neutral followed by polar

(or polar followed by neutral). Finally, the distribution descriptors

are percentages of sequence lengths within which the first amino

acid, 25%, 50%, 75%, and 100% of the amino acids with a given

property are included.

3. Conjoint triad, descriptors as proposed by Shen et al.23 These

descriptors are defined following three main steps. Firstly, the

20 standard amino acids are clustered into seven classes based on

the dipoles and volumes of their side chains (Table 1).
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Next, the frequency of amino acid triads (ie, units of three contig-

uous amino acids) is determined, with a particularity that units with

amino acids belonging to the same classes (Table 1) are considered as

equivalent since they are deemed to play a similar role. Bearing in

mind that the amino acids are stratified into seven clusters, the total

number of triads is 343 (ie, 7 × 7 × 7). For a given peptide sequence,

the frequency of each triad is determined yielding a vector F (fi) where

fi is the frequency of triad ti.

Finally, the conjoint triad descriptor is a vector D(ti), defined as:

D tið Þ= fi –min f1, f2, f3, :…, f343f gð Þ=max f1, f2 , f3, :…, f343f g ð1Þ

where min and max refer to the minimum and maximum frequencies

in the vector D(ti).

1. Generalized peptide indices: these are descriptor families to which

the aggregation operators as alternatives to the classical linear

combination of amino acid contributions are applied. These gener-

alizable indices may be stratified into three classes:

a. Global peptide indices: derived from topological, physicochemical,

chemical and biological properties of amino acids comprising pep-

tide sequences. For a given peptide sequence, a vector Vp is gener-

ated based on the selected property values of constituent amino

acids,

Vp = p1,p2,p3…pN½ �,

where N refers to the number of amino acids in a sequence. The

amino acid properties considered in the present study were compiled

from the AA index database and the literature.20,21 A total of 520 com-

prising of physicochemical, biochemical and topological amino acid

properties were retrieved. Given this high number of properties and

their possible correlation, dimensionality reduction was deemed nec-

essary. To this end, k-means cluster analysis (k-CA) was employed.

The k-CA algorithm aims to stratify a set of objects (features or

instances) into k clusters such that similar objects, as determined by a

given similarity score, are assigned to the same clusters. From an opti-

mization perspective, the k-CA may be understood as a min-max

problem, where the intra-cluster variance is sought to be minimized

while the inter-cluster variance is maximized. The partitioning of

objects into k clusters allows for the selection of representative mem-

bers from each cluster, and thus serving as a dimensionality reduction

tool. For the k-CA performed herein, the squared Euclidean distance

was employed as the similarity measure and the number of clusters (k)

was set at 12. Subsequently, 176 representative amino acid properties

were selected for computing the global peptide descriptors. For a

given peptide sequence, Vp is derived for each property and subse-

quently the aggregation operators in subsection Generalization

Scheme of the Linear Combination of Parts are applied yielding the

corresponding global peptide descriptors.

b. Sequence Order Coupling derived Descriptors: include the quasi-

sequence order (QSO), pseudo-amino acid composition (PseAAC)

and amphiphilic PseAAC indices, as proposed by Chou.24,25 The

quasi-sequence order (20 + lag) dimensional vector VQSO is com-

prised of a union of QSOa and QSOa + l vectors derived as follows:

QSOa =
faP20

a=1
fa +w

P4
l=1

rl

, l=1,2,3,4; 1 ≤ a≤20 ð2Þ

QSOa+ l =
wra−20P20

a=1
fa +w

P4
l=1

rl

, l =1,2,3,4; 20+ 1≤ a≤20+ l ð3Þ

where fa is the frequency of amino acid a, w is an empirical

weighting factor set to 0.75, rl =
PN− l

i=1
di,i+ lð Þ2 , also known as the

sequence order coupling number, di, i+ l is the physicochemical dis-

tance between the amino acids at positions i and i+ l, as defined by

Schneider and Wrede.26 The physicochemical distance metric is

defined the Euclidean distance between vectors comprising of four

physicochemical properties for amino acids, that is, hydrophobicity,

hydrophilicity, polarity, and side-chain volume.

The pseudo-amino acid composition vector VPseAAC is comprised

of the PseAACa and PseAACa + l, and are defined as follows:

TABLE 1 Classification of amino
acids based on the sidechain dipoles and
volumes

Cluster No. Dipole Scale(Debye)a Volume Scale(Å3)b Class

1 − − Ala, Gly, Val

2 − + Ile, Leu, Phe, Pro

3 + + Tyr, Met, Thr, Ser

4 ++ + His, Asn, Gln, Tpr

5 +++ + Arg, Lys

6 +ˈ+ˈ+ˈ + Asp, Glu

7 + + Cysc

aScale: (−) dipole <1.0; (+) 1.0 < dipole <2.0; (++) 2.0 < dipole <3.0; (+++) dipole >3.0; (+ˈ+ˈ+ˈ) dipole >3.0

with opposite orientation.
bScale: (−) volume < 50; (+) volume > 50.
cCys(Cysteine) not included in cluster 3 due to its capacity to form disulfide bonds.
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PseAACa =
faP20

a=1
fa +w

P4
l=1

rl

, l=1,2,3,4; 1≤ a≤20 ð4Þ

PseAACa+ l =
wra−20P20

a=1
fa +w

P4
l=1

rl

, l= 1,2,3,4; 20+1≤ a≤20+ l ð5Þ

where fa is the frequency of amino acid a, rl = 1
N− l

PN− l

l=1
Θ Ai ,Ai+ lð Þ, den-

ominated as the sequence order correlation factor, Θ(Ai, Ai + l) is the

correlation amino acid properties and w is an empirical weighting fac-

tor set to 2.5. The correlation factor describes the similarity between

amino acids based on the average squared Euclidean distance

between normalized hydrophobicity, hydrophilicity and side-chain

mass values, as expressed by Equation (6)25:

Θ Ai,Aj

� �
=
1
3

Hpho Aið Þ−Hpho Aj

� �� �2
+ Hphi Aið Þ−Hphi Aj

� �� �2
+ M Aið Þ−M Aj

� �� �2on
ð6Þ

where Hpho(Ai), Hphi(Ai), M(Ai) are normalized hydrophobicity,

hydrophilicity and side-chain mass of the amino acid Ai, obtained as

follows:

Hpho Aið Þ=
H0

pho ið Þ− P20
i=1

pho
H ið Þ
20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20

i=1

H0
pho ið Þ−

P20
i=1

pho
H

ið Þ
20

� �2

20

vuut

Hphi Aið Þ=
H0

phi ið Þ−
P20
i=1

phi
H ið Þ
20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20

i=1

H0
phi ið Þ−

P20
i=1

phi
H

ið Þ
20

� �2

20

vuut

M Aið Þ=
Mo ið Þ− P20

i=1

M ið Þ
20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20

i=1

Mo ið Þ−
P20
i=1

M ið Þ
20

� �2

20

vuut

where H0
pho ið Þ, H0

pho ið Þ and Mo(i) are the original hydrophobicity, hydro-

philicity and side-chain mass of the ith amino acid, respectively.

For the amphiphilic pseudo amino acid composition VAPseAAC is

comprised of the APseAACa and APseAACa + l, and are defined as

follows:

APseAACa =
faP20

a=1
fa +w

P4
l=1

rl

, l =1,2,3,4; 1≤ a≤20 ð7Þ

APseAACa+ l =
wraP20

a=1
fa +w

P2l
l=1

rl

, l=1,2,3,4; 20 +1≤ a≤20+2l ð8Þ

where fa is the frequency of amino acid a, rl = 1
N− l

PN− l

l=1
Hi,i+ l (H is corre-

lation function for hydrophobicity H1
i,i+ l and hydrophilicity H2

i,i+ l ,

respectively) and w is 2.5.

To compute the generalized peptide indices, aggregation opera-

tors are applied to VQSO, VPseAAC, and VAPseAAC yielding various

peptide descriptors (see subsection 2.2 Generalization scheme of the

linear combination of parts).

c. Autocorrelation descriptors: comprised of the Geary, Moran and

normalized Moreau-Broto Autocorrelation descriptors, and are

expressed by the Equations (9), (10), and (11) respectively.27-29

ACl =

PN− l

i=1
PiPi+ l

N− lð Þ l=1,2,3,4 ð9Þ

MAl =

1
N− l

PN− l

i=1
Pi−�P
� �

Pi+ l−�P
� �

1
N

PN
i=1

Pi−�P
� �2 l=1,2,3,4 ð10Þ

GAl =

1
2 N− lð Þ

PN− l

i=1
Pi−Pi+ lð Þ2

1
N−1

PN
i=1

Pi−�P
� �2 l=1,2,3,4 ð11Þ

where l is the autocorrelation lag, Pi and Pi + l are properties of

amino acid at position i and i + l, and �P the average value of property

P, �P=
PN
i=1

Pi=N . As is evident in Equations (9), (10) and (11) the total

ACl, MAl and GAl indices for each lag value involve the summation of

the calculated autocorrelation values. This formalism paves way for

other aggregation operators other than summation operator to be

applied as explained below.

2.2 | Generalization scheme of the linear
combination of parts

Classically, sequence-based protein descriptors apply the summation

of the amino acid/pair-wise contributions. This formalism in effect

suggests that these contributions are necessarily additive. However,

in biomolecules this assumption is often inaccurate and corrections

are often applied to account for the non-additive nature of macromo-

lecular properties (eg, interaction potentials are often volume

corrected when applied to protein systems30).

In the same spirit, we apply different aggregation operators (AOs)

that generalize the linear combination of amino acid and/or pairwise

contributions. These AOs have been applied in the definition of

descriptors for small molecules and comparative studies demonstrated

that these generally performed better in predicting physicochemical

and biological properties of organic molecules, when compared to the

summation operator.14-19,31-33 These AOs are stratified in three

groups: (a) Norms which are comprised of: Minkowski's norms N1,
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N2, and N3 (note that N1 is equivalent to the summation operator).

(b) Means: Arithmetic Mean (M), Geometric Mean (G), Harmonic

Mean (A), Quadratic Mean (P2), and Power Mean (P3). (c) Statistical

invariants which include: Variance (V), Standard Deviation (SD), Varia-

tion Coefficient (VC), Skewness (S), Kurtosis (K), Percentile 25 (Q1),

Percentile 50 (Q2), Percentile 75 (Q3), Inter-quartile Range (I50), X

min (MN), X max (MX), and Range (R). The mathematical expressions

for these aggregation operators are provided in Table 2.

Note that the Geary, Moran and normalized Moreau-Broto auto-

correlation descriptors may in turn be employed as generalization

schemes to other descriptors formalisms (eg, sequence order coupling

derived descriptors) which yield vectors of amino acid/pair-wise

contributions.

2.3 | Design and implementation

The PeptiDesCalculator is standalone software developed in Java pro-

gramming language (version 1.8) and can thus be run on any operating

system that has the Java Virtual Machine (JVM) installed. The

PeptiDesCalculator integrates both the front-end and back-end layers.

The former contains the Graphic User Interface (GUI), which allows

TABLE 2 Norms, means and statistical AOs employed to generalize the summation operator

Group Name Identifier Formula

Norms Minkowsky norm (p = 1)

Manhattan distance

N1 N1=
Pn
i= 1

Ai

Minkowsky norm (p = 2)

Euclidean distance

N2 N2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i= 1

Ai
2

s

Minkowsky norm (p = 3) N3
N3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1

Ai
33

s

Means Geometric Mean G
G=

ffiffiffiffiffiffiffiffiffiffiffiQn
i= 1

Ai
n

s

Arithmetic Mean (Power mean of degree β = 1) M
Mβ =

Aβ
1 +A

β
2
+…+Aβ

n

n

	 
1
β

Quadratic Mean (Power mean of degree β = 2) P2

Power mean of degree β = 3 P3

Harmonic Mean (Power mean of degree β = −1) H

Statistical Operators Variance V

V=

Pn
i=1

Ai−Mð Þ

n−1

Skewness S S = n� X3ð Þ
n−1ð Þ n−2ð Þ σð Þ3

X3 =
Pn
i= 1

Ai−Mð Þ3

M, arithmetic mean

σ, SD

Kurtosis K K= n n+1ð ÞX4−3 X2ð Þ X2ð Þ n−1ð Þ
n−1ð Þ n−2ð Þ n−3ð Þ σð Þ4

Xj =
Pn
i=1

Ai−Mð Þj

M, arithmetic mean

SD, standard deviation

SD SD

SD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i =1

Ai−M

� �2

n−1

vuut
Variation Coefficient VC VC = σ/M

Range R R = Amax − Amin

Percentile 25 Q1 Q1= N
4 + 1

2

� �
N, vector size

Percentile 50 Q2 Q2= N
2 + 1

2

� �
N, vector size

Percentile 75 Q3 Q3= 3N
4 + 1

2

� �
N, vector size

Inter-quartile Range I50 I50 = Q3 − Q2

Maximum value MX MX = Ai max

Minimum value MN MN = Ai min
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for the descriptor configuration, while the latter contains

implementations for these molecular descriptors.

2.3.1 | Front end: PeptiDesCalculator graphic user
interface

The GUI was designed to allow for a simple and user-friendly configura-

tion of the peptide molecular descriptors (MDs) computation. Figure 1 is

a snapshot of the PeptiDesCalculator GUI. This contains two main tabs,

the first (denominated Descriptors) for selecting the MDs to be com-

puted and the second (Generalization Scheme) contains the different

operators that generalize the classical approach of summing amino acid

contributions to obtain global peptide parameters. Moreover, dialogs for

selecting the input file(s) and defining the output file paths are provided.

The PeptiDesCalculator supports the Tab Separated Value (.txt) and Pro-

tein Data Bank (.pdb) as input file formats. The computed descriptors are

saved as Tab Separated Value (.txt) files. Considering that the software

F IGURE 1 PeptiDesCalculator
Graphic User Interface (GUI) showing
two main tabs: Descriptors—for
selecting the MDs to be computed
and Generalization Scheme—for
configuring the different operators

F IGURE 2 UML diagram for the key classes responsible for the MD calculation

6 BARIGYE ET AL.



provides as many as 48 485MDs, Comma Separated Value (.csv) file for-

mat was not considered as a possible output file format as it is not ame-

nable to process such an enormous number of features.

2.3.2 | Back end: Infrastructure for peptide
descriptor computation

The tasks (descriptor calculation) determined by the client through the

GUI configuration are processed by the PeptideDescriptor library. This

library is stratified in the peptides and AOs packages, where the latter

contains the classes for the MD computation, while the former is com-

prised of classes dedicated to the different generalization schemes.

Figure 2 is the Unified Modeling Language (UML) diagram for the

key classes responsible for the MD calculation. As may be observed,

the Quasi Sequence Order, AmiphilicPseudoAminoAcidComposition and the

Pseudo Aminoacid Composition classes support the SequenceOrderCoupling

abstraction. Moreover, with the exception of the Compositional and Com-

positionTransitionDistribution classes, the rest of the peptide descriptor

computation classes invoke the GeneralizedDescriptors framework, con-

sistent with the notion of providing alternative descriptions to the linear

combination of amino acid contributions. On the other hand, the control-

ler package acts as an intermediate layer, handling the interaction

between the backend, and frontend layers.

Finally, considering that each descriptor calculation may be per-

formed independently, the PeptiDesCalculator software was designed

following a parallel processing framework. In this sense, the submitted

tasks are assigned to distinct threads depending on the number of

available cores and consequently enabling their parallel execution.

3 | RESULTS AND DISCUSSION

3.1 | Parallel computing efficiency

Contemporary computer workstations are typically multiprocessor

systems, and thus often yield improved absolute performance (relative

to uniprocessor systems), when computations are divided into sub-

tasks and executed simultaneously on different processing units. In

this subsection, we sought to examine the possible efficiency of the

implemented parallel computing framework in accelerating the speed

of the peptide MDs computation when performed on multiprocessor

systems. For this study we employed the starPepDB dataset compris-

ing of 48 335 peptides of diverse lengths and composition (3318 were

skipped as they contained more than 50 amino acids, consistent with

the standard peptides definition).34 The starPepDB dataset is freely

available at http://mobiosd-hub.com/starpep. The peptide descriptor

computations were performed on a Medion computer workstation

with the following properties: AMD A10-8750 Radeon R7, 12 Com-

pute Cores 4C + 8G 3.60 GHz, 8GB RAM. Note that for this experi-

ment, only 4GB RAM were allocated to the JVM to execute

PeptiDesCalculator software. For this study, two descriptor groups

were formed with the first comprising of the pseudo-amino acid com-

position, Geary autocorrelation, global peptide and conjoint triad

descriptors, and the second group contained the compositional and

composition, transition and distribution descriptors. Table 3 illustrates

the total and average computation time, as well as speedup and effi-

ciency metrics for the two descriptor groups.

It is evident from Table 3 that the total processing time generally

decreases with an increase in the number of processors, and it can

therefore be inferred that the parallel computing architecture was

adequately implemented.

3.2 | Evaluation of Predictive Capacity of
PeptiDesCalculator Indices

In order to assess the utility of the PeptiDesCalculator indices in the

modeling of peptide bioactivity profiles, we selected eight endpoints,

that is, Hepatitis C inhibitory activity (407 peptides), anti-breast can-

cer (240 peptides), anti-colon cancer (227 peptides), HIV inhibitory

activity (532 peptides), anti-skin cancer (188 peptides), C. albicans

(781 peptides), P. aeruginosa (890 peptides), and Listeria (141 peptides)

inhibitory activities. For each endpoint, a binary classification model

TABLE 3 Speedup analysis of the PeptiDesCalculator indices for a dataset comprising of 48 335 peptides of diverse sequence lengths

Number of Processors Processing time (s) Speedupa Efficiencyb
Processing time for

one molecule (s)

Processing time

for one MD (s)

PseAAC, Geary Autocorrelation, Global Peptide Descriptors, Conjoint Triad (15 721 Descriptors)

1 6785.72 1.00 1.00 0.14 0.43

2 5646.53 1.20 0.83 0.12 0.36

4 4321.52 1.57 0.64 0.09 0.27

Compositional Descriptors, Composition Transition Distribution (4577 Descriptors)

1 1964.68 1.00 1.00 0.04 0.43

2 2178.44 0.90 1.11 0.05 0.48

4 923.56 2.13 0.47 0.02 0.20

aSpeedup: ratio of the processing time for a baseline sequential workflow (ie, using one processor) to the time taken with a parallelized framework to exe-

cute the same task on n processors (n > 1).
bEfficiency: ratio of speedup to the number of processors.
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was developed. Bearing in mind that the reported metric for the dif-

ferent inhibitory profiles was the half-maximal inhibitory concentra-

tion (IC50),
34 each bioactivity endpoint (response variable) was first

transformed into a binary variable (ie, active/inactive) to render it

amenable for classification model building. For the antineoplastic

activity, a threshold value of 20 μM was considered (ie, peptides with

IC50 values ≤20 μM were labeled as active, while those with IC50

values >20 μM were labeled as inactives). For the rest of the end-

points, a threshold value of 10 μM was employed.

Figure 3 shows the workflow followed in modeling of these end-

points. Briefly, the PeptiDesCalculator indices were computed for

each of the datasets and the pair-wise (x/x) coefficient of determina-

tion calculated to exclude the highly correlated indices (ie, only indices

with R2 < 0.60 were retained). The resulting data matrices were ran-

domly divided into training (80%) and test (20%) sets, with the former

dedicated to the classification model building and the latter to the

evaluation of the models' predictive capacity. For imbalanced datasets

(ie, containing disproportionately more peptides in one class relative

to the other) the respective imbalance ratios, IR = [number of peptides

in majority class/number of peptides in minor class] were determined

and for datasets with IR ≥2, the Adaptive Synthetic (ADASYN)

oversampling approach was applied to the minority class to yield bal-

anced class distributions.

Next, a genetic algorithm (GA) was applied to the training data

matrix in order to select the subsets of PeptiDesCalculator indices

that yield the best classification models. The GAs are optimization

methods designed to mimic the natural selection process in that the

fittest individuals (solutions), as represented by their chromosomes,

progressively evolve towards more optimum solutions. From a model

building perspective, the chromosomes (solutions) are the classifica-

tion models, and the genes the variables. For each generation,

segments of the most optimum chromosomes are crossed over (ie,

reproduce) and some genes (variables) randomly mutated for others,

thus yielding new chromosomes whose performance is in turn evalu-

ated. For the model building procedure employed herein, following

GA configuration setting was employed: population size = 100, cross-

over probability = 0.5, mutation probability = 0.2 and number of

generations = 100.

The predictivity of the built classifiers was assessed over 10-fold

external validation sets in terms of the classification metrics: accuracy

(ACC), sensitivity (SE), specificity (SP), Precision (PR), and Mathew's cor-

relation coefficient (MCC), respectively. Table 4 shows the average test

set classification parameters obtained using a 10-fold external validation

procedure for each of the modeled bioactivity endpoints (configuration

parameters and matrices of final features contained in built classifiers

provided as supplementary information, SI1-2). As may be observed, the

built classifiers generally demonstrate robust predictive power as dem-

onstrated by the respective Cooper statistics, that is, ACC = 0.687-0.858,

SE = 0.609-0.838, SP = 0.591-0.912, PR = 0.661-0.884, and

MCC = 0.349-0.577. The limits of acceptability for test set classifier per-

formance are: ACC, SE, SP, and PR > 0.5 and MCC > 0.35 The best per-

formance was obtained for anti-listeria activity Support Vector Machine

(SVM) classifier (ACC = 0.819, SE = 0.838, SP = 0.753, PR = 0.884,

MCC = 0.577), followed byHepatitis C inhibitory activity Random Forest

(RF) classifier (ACC = 0.792, SE = 0.807, SP = 0.781, PR = 0.748,

MCC = 0.587), and HIV inhibitory activity RF classifier (ACC = 0.788,

SE = 0.767, SP = 0.810, PR = 0.805, MCC = 0.579). The least favorable

performance is provided by the C. albicans inhibitory activity Gradient

Boosting (GB) classifier (ACC=0.687, SE = 0.752, SP= 0.591, PR= 0.713,

MCC = 0.349). Even then the parameters for this classifier are well above

the limit of randomperformance.

3.3 | Comparison with other approaches in the
literature

Herein, we sought to evaluate the predictivity of the

PeptiDesCalculator indices relative to the state-of-the art approaches

employed in modeling the bioactivity of peptides. To this end, we

retrieved from the literature a recently built dataset comprising of 1778

antimicrobial peptides (AMPs) and an equal number of decoys (non-

AMPs) with a sequence length distribution similar to the former, yield-

ing a total of 3556 peptides.36 Bearing in mind that PeptiDesCalculator

software computes over 48 000 indices, we sought to reduce the initial

set of indices to be considered for the model building. In this sense, the

PeptiDesCalculator indices computed for the AMPs dataset considered

only the following representative operators from each group of the

AOs: N1 and N2 for the norms, GM, M, P2, and H for the means, and V,

S, K, 5, I50 for the statistical invariants. Consistent with the standard

definition of peptides (ie, macromolecules composed of 2-50 amino

acids), the PeptiDesCalculator software filtered out macromolecules

with more than 50 amino acids; their identity is provided in the input-

Errors.log file. Following the same procedure discussed in the previous

section and illustrated in Figure 3, antimicrobial activity classification
F IGURE 3 General workflow followed in the modeling of the nine
peptide bioactivity endpoints in the present report
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models were built using the retrieved dataset. To approximate the

dataset size employed in the reference study, the test dataset size was

set to 33% of the entire dataset. Table 5 compares test set performance

of the Deep Neural Network (DNN), Collection of Anti-Microbial Pep-

tides (CAMP) models based on RF, SVM, Artificial Neural Networks

(ANN), and Discriminant Analysis (DA), as well as the gapped-kmer-

SVM classifier (gkmSVM) classifier.37,38

While direct comparisons of test set performance may not be

made since the study by Veltri et al36 included sequences with

more than 50 amino acids (approx. 15% of the unfiltered test

dataset assuming equal training-test set distribution) and consid-

ered a 1-fold test set stratification (in place of 10-folds as in the

present study), it may be inferred that the PeptiDesCalculator indi-

ces based model generally yield similar performance with the DNN

and CAMP-RF classifiers which were the best models reported by

Veltri et al.

The PeptiDesCalculator SVM model was built using only 15 fea-

tures, while the CAMP-RF classifier employed 64 features, highlight-

ing the greater simplicity for the former notwithstanding the

difference in test set size (data matrix of the 15 features employed to

build the SVM classifier provided as supplementary information, SI2).

It is indeed implausible that the number of features in the latter is four

times that of the former only to achieve accurate prediction of

approximately 15% of the unfiltered test (sequences with more than

50 amino acids). Models characterized by a lower degree of freedom

are considered to be more robust and thus less prone to fortuitous

correlation.

The comparable performance of the PeptiDesCalculator SVM

classifier and the DNN model, echoes the need to reconsider the push

to adopt sophisticated deep learning algorithms to solve classical

modeling problems in detriment of the efforts to define more accurate

and diverse approaches for codifying chemical structural information.

For a given modeling task, the gains in accuracy using complex algo-

rithms should be blatant for their use to be justified. In the study by

Veltri et al,36 although the DNN directly uses the peptide sequences

to build an antimicrobial classifier, the subsequent model complexity

due to the embedding, convolutional, max-pooling and Long Short

Term Memory (LSTM) layers, prior to the output layer, outweighs the

possible gains obtained from the direct use of the peptide sequences,

since no major improvements in test set performance are observed.

On the other hand, the PeptiDesCalculator indices employed in the

SVM classifier are based on the application of simple mathematical

operators on peptide sequences or vectors of amino acid physical,

chemical or physicochemical properties which on one hand involve a

rather low computational cost and are interpretable in physicochemi-

cal and/or chemical structural terms (the meaning of each of these

features is available at https://www.genome.jp/aaindex/AAindex/list_

of_indices).

4 | CONCLUSION

The PeptiDesCalculator software provides a user-friendly platform for

computing theoretical descriptors for peptide molecules. In light of

TABLE 4 Average 10-fold external
validation performance of classification
models for the 8 peptide bioactivity
endpointsa

Activity Act./Inact.b Classifierc ACC SE SP PR MCC

HIV 261/270 RF 0.788 0.767 0.810 0.805 0.579

Breast cancer 75/165 RF 0.787 0.648 0.859 0.700 0.517

Colon cancer 47/180 GB 0.781 0.609 0.849 0.571 0.441

Skin cancer 39/149 RF 0.858 0.658 0.912 0.661 0.569

C. albicans 120/661 GB 0.687 0.752 0.591 0.713 0.349

Hepatitis C 182/225 RF 0.792 0.807 0.781 0.748 0.587

Listeria 39/149 SVM 0.819 0.838 0.753 0.884 0.577

P. aeruginosa 505/385 RF 0.781 0.809 0.746 0.795 0.558

aClassifier configurations are provided as supporting information.
bAct.: Active, Inact.: Inactive.
cRF: Random Forest, GB: Gradient Boosting, SVM: Support Vector Machine.

TABLE 5 Comparison of test set
performance of PeptiDesCalculator
based models and the state-of the art
approaches reported in the literature

Method Classifier Features ACC (%) SE (%) SP (%) MCC

DNN34 - 200 91.01 89.89 92.13 0.820

CAMP34 RF 64 87.57 92.70 82.44 0.755

CAMP34 SVM 64 84.41 88.90 79.92 0.691

CAMP34 ANN 64 84.04 82.98 85.09 0.681

gkmSVM34 SVM l = 9, k = 6 89.46 88.34 90.59 0.790

PeptiDesCala SVM 15 91.17 91.43 90.93 0.824

a10-fold test set validation is performed to eliminate possible dependence on test set selection.
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the satisfactory performance of the models built with the

PeptiDesCalculator indices, it may be inferred that these codify rele-

vant peptide structural, chemical, and physicochemical information,

useful in the prediction of peptide bioactivity profiles. It is hoped that

this computational program will facilitate the development of in silico

models for the prediction of peptide bioactivity, pharmacokinetic, and

toxicological profiles and consequently guide the discovery, design,

and optimization of therapeutically interesting peptides. The

PeptiDesCalculator software is available for academic use upon

request at info@protoqsar.com.
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