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ABSTRACT
The phenols are structurally heterogeneous pollutants and they 
present a variety of modes of toxic action (MOA), including polar 
narcotics, weak acid respiratory uncouplers, pro-electrophiles, and 
soft electrophiles. Because it is often difficult to determine correctly 
the mechanism of action of a compound, quantitative structure-
activity relationship (QSAR) methods, which have proved their 
interest in toxicity prediction, can be used. In this work, several QSAR 
models for the prediction of MOA of 221 phenols to the ciliated 
protozoan Tetrahymena pyriformis, using Chemistry Development Kit 
descriptors, are reported. Four machine learning techniques (ML), k-
nearest neighbours, support vector machine, classification trees, and 
artificial neural networks, have been used to develop several models 
with higher accuracies and predictive capabilities for distinguishing 
between four MOAs. They showed global accuracy values between 
95.9% and 97.7% and area under Receiver Operator Curve values 
between 0.978 and 0.998; additionally, false alarm rate values were 
below 8.2% for training set. In order to validate our models, cross-
validation (10-folds-out) and external test-set were performed 
with good behaviour in all cases. These models, obtained with ML 
techniques, were compared with others previously reported by other 
researchers, and the improvement was significant.

Introduction

Phenolic compounds are environmental pollutants that exhibit their toxicity via different 
mechanisms of toxic actions (MOAs) [1]. The interactions between toxicants and living sys-
tems are poorly understood; that is why determining the correct MOA of a chemical com-
pound is not easy [2]. This problem becomes more pronounced when the mechanistic classes 
are unevenly distributed, as in the case of 221 phenols investigated in the present report. 
Phenols have been of interest to environmental toxicologists because of the increasing use 
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of them in various industries, such as paper manufacturing and resin production [3,4]. Others, 
such as chlorophenols used as bactericides, fungicides, and herbicides [5], are very toxic due 
to its hydrophobicity and capability of persistence in the environment [6,7]. Most synthetic 
phenolic compounds are toxic and it is not surprising that a lot of them are classified as 
hazardous pollutants [4], and some of these products have been catalogued as potentially 
hazardous by the Environment Protective Agency [8,9].

It is recognized that substitution of a phenolic ring may result in a number of different 
mechanisms of toxic action. These range from non-reactive polar narcosis, through to res-
piratory uncoupling of oxidative phosphorylation, directly attack nucleophilic sites mediated 
by soft electrophiles, as well as metabolic activation before undergoing respective covalent 
interactions, this last one a distinctive feature of compounds classified as proelectrophiles 
[10]. There are different methods of classifying compounds according to MOAs, the most 
frequent and conventional one is the rules-based method [11]; because of its limitations [2], 
attention has been focused on the use of quantitative approach based on statistical classi-
fication in predicting MOAs [12–14]. Quality toxicity data is required to formulate and validate 
high-quality quantitative structure–activity relationship (QSAR) studies [15], for example 
the database published by Aptula et al. [12] to develop descriptor-based classification mod-
els. Several studies, based on various statistical methods, for separating phenols into these 
four MOAs, had been derived for this dataset, using quantum mechanical, whole molecule, 
and empirically based molecular descriptors with known or pre-assigned mechanism in a 
learning database [12,13,16–19].

Both Aptula et al. [12] and Ren [13], in their investigations, have used linear discriminant 
analysis (LDA). However, other authors have used regression methods [18] and neural net-
works [19–21], but to a minor amount. Aptula et al. [12] had problems with correctly devel-
oping models for assigning the correct MOA using linear discriminant analysis (LDA). Thus, 
the use of machine learning (ML) approaches, such as support vector machine (SVM) [22], 
artificial neural network (ANN) [23,24], classification trees (CTs) [25] and k-nearest neighbours 
(k-NNs) [26,27], provide an alternative to LDA method to develop models with better pre-
dictive capabilities. Therefore, such techniques are known to enable the analysis of more 
complex, non-linear relationships and, in general, offer greater performance than their sta-
tistical forebears [28].

On the other hand, our research group has developed a novel scheme to generate molec-
ular descriptors, based on the application of discrete mathematics and linear algebra theory. 
This approach has been successfully applied to the prediction of several physical, physico-
chemical, chemical, pharmacokinetical, toxicological, as well as biological properties [29–38]. 
Bearing in mind that mentioned above, and in response to increased performance demands 
in modelling MOAs, the main aim of the present report was to make use of different super-
vised ML techniques to perform QSAR models for improving the prediction of toxic modes 
of action of phenols from molecular structures.

Materials and methods

Dataset 

The MOA dataset of Aptula et al. [12] was identified as suitable for developing classification 
models. The database contained 153 polar narcotic (MOA-1), 18 weak acid respiratory uncou-
pling (MOA-2), 27 pro-electrophilic (MOA-3), and 23 soft-electrophilic (MOA-4) phenols 
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derivatives. The whole dataset contains 221 phenols classified into four MOAs, which were 
assigned following structural rules developed earlier using growth inhibition assays with 
Tetrahymena pyriformis [39].

Mechanisms of toxic action (MOA) of the 221 phenols
Distinct substituent features of the phenolic ring explained a variety of MOAs present in this 
interesting chemical class. The phenols classified as weak acid respiratory uncoupling are 
those dependent on the system pH, which undergo heterolytic dissociation, and, in the case 
of eukaryotic cells, impair the pH and electrochemical gradient across the inner mitochon-
drial membrane preventing ATP final formation. Electrofilic modes of actions include soft 
electrophiles and pro-electrophiles; their toxicity can be attributed to the alkylation of essen-
tial protein thiol or amino groups, or to oxidative stress produced by free radical formation, 
and in the second case covalent interactions with electron-rich sites take place after initial 
biotransformation to more reactive form [10]. An important MOA by means of the one which 
phenols act as toxicants to aquatic organisms is polar narcosis. It is an unspecific membrane 
irritation caused by non-covalent van der Waals type interactions of xenobiotics accumulated 
in lipid tissues [16]. The most important difference between electrophilic mechanisms and 
polar narcosis lies in the greater specificity for the covalent bonding to high electronic density 
sites for the first ones, contrary to the non-specificity of the non-covalent interactions with 
lipid components in the case of the latter [31].

Molecular descriptors

For this study, we employed the Chemistry Development Kit (CDK https://sourceforge.net) 
[40] to calculate the molecular descriptors. After that, those MDs with values constant or 
near to constant were deleted and not used in further analysis. Consequently, we finally 
used 157 descriptors to perform the attribute selection, which permits us to obtain the 
ML-based models.

Machine learning approaches

The ‘No-free-lunch’ theorem [41] demonstrates that it is not possible to find an algorithm 
being better in behaviour for any problem. In several cases, a selection of descriptors is the 
only essential condition for developing a general system. The next step involves defining 
the best computational method to develop robust QSAR models. The present report deals 
with some of the most common classification techniques and how they behave for prediction 
of the MOA of phenol derivatives. Four classification algorithms were applied: support vector 
machines using sequential minimal optimization (SVM-SMO) [42], multilayer perceptron 
(MLP) [23,43], tree classification derived from artificial intelligence (J48) [44] and instance-
based algorithm (IBk) [27,45]. The models were developed using Waikato Environment for 
Knowledge Analysis (WEKA), version 3.6 [46].

Attribute selection
One of the problems of ML process is to select attributes from a large list of candidates to 
describe the data. For instance, not all of the 157 selected CDK molecular descriptors are 
needed for representing features of the depiction of MOAs. Usually the addition of irrelevant 
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or distracting attributes to a dataset ‘confuses’ the system [46]. Attribute selection is normally 
done by searching the space of attribute sub-set most appropriate for the prediction. In the 
case of non-linear ML, using supervised techniques generally can be filter or wrapper 
method(s) [47]. In the present report, the scheme of attribute selection wrapper imple-
mented in WEKA was applied to select the attribute sub-sets for each ML technique. It eval-
uates each sub-set using the ML algorithm that will ultimately be employed for learning. It 
means the learning algorithm is wrapped into the selection procedure. At each step, this 
option includes in the model set the feature whose addition to the model results in the 
smallest error (computed as the error rate) and continues until the specified stopping con-
dition is met.

Performance criteria
There are many approaches to evaluate the performance of classification models. In a well-
known report [48] a unified overview of methods that are currently used was given, as well 
as the advantages and disadvantages of each approach. In general, parameters derived from 
a confusion (contingency) matrix of the actual vs predicted class are one of the most used 
constants. In the present report, as performance criteria, we have selected the accuracy (Ac) 
(global good classification), that is the rate of total number of predictions that were corrected, 
and the rate of false positives (also called false alarm rate), that was estimated as the ratio 
of negative incorrectly classified instances [46].

Another way to evaluate the performance of a classifier is by the Receiver Operator Curve 
(ROC) [49–51]. An ROC graph is a technique for visualizing, organizing, and selecting classi-
fiers based on their performance. The ROC graphs are two-dimensional graphs in which true 
positive rate (tprate, also called hit rate and recall) is plotted on the y-axis, and fprate is plotted 
on the x-axis by means of the variation of decision threshold. An ROC graph depicts relative 
trade-off between benefits true positive (TP) and costs false positive (FP) [51]. An indicator 
of the quality of the classifier is the area under the ROC curve, abbreviated AURC [51–54]. 
Since the AURC is a portion of the area of the unit square, its value will always be between 
0 and 1. The AURC has an important statistical property: the AURC of a classifier is equivalent 
to the probability that the classifier will rank a randomly chosen positive instance higher 
than a randomly chosen negative instance [54]. The closer this area is to 1, the closer the 
behaviour of the classifier as a perfect classification model (100% of tprate, with 0% of fprate).

Model validation procedure

Internal validation of ML models
In the development of each model, a 10-fold cross-validation (CV) procedure was used. In 
this procedure, compounds of the training set (TS) were randomly divided into 10 sub-sets. 
Nine sub-sets were used as novel ‘TS’ to develop a ML model, and the holdout set was used 
to ‘predict’ the performance of the fitted model. This process is repeated 10 times on different 
‘TSs’, so that, in the end, every instance has been used exactly once for testing. This procedure 
is used to perform the selection of parameters and to avoid over-fitting.

External test set
Once the final models based on the TS of 221 phenols were established, an additional dataset, 
extracted from a publication using the same MOA assignment rules based on T. pyriformis 
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assays, was used to test the predictive capability of models [55]. After the removal of dupli-
cates and compounds with another MOA (pro-redox cycler) not covered by the TS, a predic-
tion set (PS) of 21 compounds was obtained for this goal. This set consisted of 16 polar 
narcotics, one respiratory uncoupler and four soft electrophiles; the PS is never used in the 
development of the model, but it is used to test the predictive power of the final model. In 
order to assess the applicability domain (AD) of the models, we use Ambit-Discovery software 
[56,57].

Results and discussion

Development of the classification models to predict the MOAs

The ML approach consists of programming computers to optimize a performance criterion 
by using example data or past experience. The optimized criterion can be the accuracy 
provided by a predictive model and the value of a fitness or evaluation function in an opti-
mization problem. Therefore, such techniques are known to enable the analysis of more 
complex, non-linear relationships [28], for example; Schultz and Netzeva [58] have declared 
that toxicity is intrinsically a non-linear phenomenon. In the present work, the results for 
each ML technique used to develop various models to predict MOAs are given. Here, only 
the best model for each ML approach is displayed. The performance of the classifiers for the 
TS is provided in Table 1 and the performance for the 10-fold CV study is given in Table 2 .

J48
In the present study, a decision tree for classification of phenols into the four MOAs is 
inducted by the algorithm C 4.5 (J48). The C 4.5 is an algorithm used to generate a decision 
tree developed by Quinlan [44], an extension of Quinlan’s earlier ID3 algorithm. The basic 
methodology of divide-and-conquer described in CART [59] is also used in C 4.5. The differ-
ences are in the tree structure, the splitting criteria, the pruning method, and the way missing 
values are handled [44]. Finally, a J48 tree was developed by Weka, with nine attributes. The 
minimum number of instances per leaf was four. The tree contained 21 nodes in total; 11 of 
them were terminal ones. This model correctly classified 95.93% of the compounds in the 
TS, with an AURC of 0.978 and fprate of 8.2%. In the modelling of individual MOA classes (see 
Table 1), polar narcotics achieved the best results using all data as TS (Ac of 100%). In the CV 

Table 1. Performance of QSAR classifiers using all data (221 compounds) as TS.

aBetween parentheses is the number of attributes in the model, J48, IBk, MLP, SVM-SMO, and LDA.
bBetween curly brackets numbers of compounds for each MOA.
c,dModels perform on five (log Kow, pKa, ELUMO, EHOMO, NHdon) and six (log Kow, pKa, ELUMO, EHOMO, NHdon, NHacc) molecular descrip-

tors by Aptula et al. [12].
*All values are expressed as a percentage (%).; nr, not reported.

Methoda

MOA 1 {153}b MOA 2 {18}b MOA 3 {27}b MOA 4 {23}b

fprate* AURC Ac* fprate* AURC Ac* fprate* AURC Ac* fprate* AURC Ac*
J48 (9) 11.8 0.975 100.0 0.5 0.989  94.4 0.0 0.973 81.5 0.0 0.997  87.0
IBk (8)  8.8 0.999 100.0 0.5 1.000  94.4 0.0 0.998 81.5 0.0 1.000  95.7
MLP (8)  1.5 0.985  98.0 0.0 1.000 100.0 1.5 0.954 92.6 0.5 0.996 100.0
SVM-

SMO 
(9)

 2.9 0.981  98.7 0.5 0.998 100.0 1.0 0.969 92.6 0.0 0.998  95.7

LDAc (5) nr nr  93.5 nr nr  77.8 nr nr 77.8 nr nr  82.6
LDAc (6) nr nr  94.1 nr nr  66.7 nr nr 81.5 nr nr  82.6
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experiment, the model predicted properly an average of 90.50% of the chemicals with an 
fprate of 11.7% (for other details see Table 2).

IBk
Another model was developed by instance-based learning (IBL) algorithms; IBL algorithms 
are derived from the nearest neighbour pattern classifier [26]. They are highly similar to 
edited nearest-neighbour algorithms [60–62], which also save and use only selected instances 
to generate classification predictions. The best sub-set of attributes contained eight selected 
molecular descriptors. Euclidean distance was used for finding nearest neighbours. No dis-
tance weighting was applied. The optimal number of nearest neighbours was determined 
by ‘trial and error’ test and achieved a value of two. This model for the TS showed an accuracy 
of 96.83%, an AURC of 0.999, and a fprate of 6.1%. However, in CV test an average of 88.23% 
of the chemicals was appropriately predicted, this was the lowest value of all ML models 
(see Table 2).

MLP
The ANN model was obtained with the sigmoid function as an activation function. The 
number of hidden nodes was selected by ‘trial and error’ strategy, ranking the results of 
performance. The ANN with the configuration of 8-6-4 was achieved. The model was per-
formed on eight input variables, an average of 97.74% of the compounds were correctly 
classified, with an AURC of 0.984 and fprate of 1.3%. Between the different MOAs, uncouplers 
and soft electrophiles achieved the best results using all data as TS (Ac: 100%) (see more 
details in Table 1). This model achieved good results in the CV test, properly predicted an 
average of 94.57% of the chemicals with only a fprate of 3.6% (see Table 2).

SVM-SMO
All kernels implemented in WEKA were tested. For each kernel, different parameters were 
examined by ‘trial and error’ strategy, ranking the results of performance. The configuration 
that yields the highest ranking was selected. After all, we found the radial basis function 
(RBF) kernel produced the best results in modelling MOA. The model was based on nine 
independent variables. For RBF kernel, we ran the experiments with gamma = (1–4) and 
ranked the obtained results. Finally, gamma = 3.8 that ended the RBF kernel in 
K (xi , xj) = e(−3.8|xi−xj |

2
) yielded the highest ranking with a C value of 20. For this model, the 

value of accuracy was 97.74%, with an AURC of 0.982 and fprate of 2.2%. The uncouplers and 

Table 2. Performance of the ML-based QSAR classifiers in the 10-fold-cross-validation.

aBetween parentheses is the number of attributes in the model, J48, IBk, MLP, SVM-SMO, and LDA.
bBetween curly brackets numbers of compounds for each MOA.
*All values are expressed as a percentage (%).

Method a

MOA 1 {153}b MOA 2 {18}b MOA 3 {27}b MOA 4 {23}b

fprate* AURC Ac* fprate* AURC Ac* fprate* AURC Ac* fprate* AURC Ac*
 J48 (9) 16.2 0.940 96.7 0.0 0.957 77.8 0.0 0.891 63.0 5.1 0.932 91.3
IBk (8) 27.9 0.957 96.1 0.5 0.964 77.8 3.1 0.933 44.4 0.0 0.976 95.7
MLP (8) 4.4 0.965 96.1 0.5 0.997 94.4 3.1 0.917 85.2 1.0 0.993 95.7
SVM-

SMO 
(9)

17.6 0.893 95.4 1.5 0.936 83.3 3.1 0.868 70.4 0.0 0.994 87.0
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polar narcotics achieved the best degree of classification (100% and 98.7%, correspondingly), 
AURC of 0.998 and 0.981, as well as values of fprate of 0.5% and 2.9% (see Table 1). Interestingly, 
in the CV test, 90.50% of the compounds were correctly predicted with an fprate of 12.7% 
(more details in Table 2).

Comparison between ML models and with previous reports 

First, we developed a comparison between our ML-based models according with their gen-
eral performance for the TS. The best accuracy values were achieved with MLP and SVM-SMO 
models (97.74%) followed by IBk model (96.83%) and J48 model with 95.93%; as can be seen 
the difference between them is lower than 2% and, also, they are rather better than the 
results of Aptula et al. [12] (89.10%) using LDA-based models12. The parameter AURC for 
the models shows values between 0.999 (IBk) and 0.982 (SVM-SMO). On the other hand, the 
fprate was always lower than 10%; for the models developed with J48 and IBk the achieved 
values were 8.2% and 6.1%, respectively. A better performance for this parameter was 
obtained with SVM-SMO (2.2%) and MLP (1.3%) models. As we pointed out above, all the 
models showed good behaviour in the CV experiment. Unfortunately, these other parameters 
were not reported in the previous work.

Here, taking into account the correct assignment of each MOA per compound, a com-
parative analysis for the most significant differences between our ML-based models and the 
two LDA models is carried out. As can be appreciated in Table 1, the ML techniques presented 
a very good performance. The higher accuracies for polar narcotics were obtained using J48 
and IBk with 100%, followed by the other ML models (over 98%) and LDA models with 93.5% 
and 94.1%. The correct identification of uncouplers by ML-models (all above 94.4%) is striking 
with respect to Aptula et al.’s [12] results using LDA (under 78%). Although the predictions 
for the pro-electrophiles group were identical for two of our models (J48 and IBk) and the 
best LDA model 81.5%; the models developed with MLP and SVM-SMO showed slightly 
better values of 92.6%. The last MOA (soft electrophiles) was also well predicted, the MLP 
model shows a 100% accuracy followed by IBk and SVM-SMO with 95.7%, J48 with 87% and, 
finally, both LDA models with 82.6%. The best performance of the present study corresponds 
to MLP and SVM-SMO models when all the classes, despite the severely skewed distribution 
of them, achieved accuracies over 92.6% and a fprate below 1.5% (except SVM-SMO for polar 
narcotics with fprate = 2.9%). In the case of MLP and SVM-SMO in general, the difference in 
predictive performance with respect to J48 and IBk is rather greater, with a better overall 
performance for the pro-electrophiles and very similar for polar narcotics. The ML-based 
models, for the four groups, show better accuracies than Aptula et al.’s [12] LDA-models, with 
the exception of pro-electrophiles for J48 and IBk (idem).

We have discussed and demonstrated that, by making use of several ML techniques, it is 
possible to construct models with better predictive capabilities compared with the models 
previously obtained by Aptula et al. [12]. As a result, we concluded that ML-based showed 
better performance in discriminating between the four MOAs.

Now, although this topic is not an objective of our work, we are going to give a brief and 
general explanation about the descriptors used to develop the ML-based models. In Table 
3 you can see the names of the descriptors that were used in each model, following the 
classification proposed by the CDK program. The direct interpretation of ML-based models 
is not an easy task, mainly due to the fact that sometimes they do n′ot give an equation or 
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because they take into account non-linear relationships that make this issue difficult. 
However, we decided to give our considerations related to the information that the different 
types of descriptors give from molecular structure.

The problems that we try to solve are to classify the phenol derivatives in one of the four 
MOAs; taking a closer look at these we can see that they are driven for different structural 
characteristics. For instance, taking the two more different MOAs among them as examples, 
the MOA-1 (polar narcotics) should be well described by descriptors related with hydropho-
bicity, molecular size, structural features (like functional groups), among others. On the other 
hand, to describe respiratory uncouplers, MOA-2 descriptors capable of obtain the electronic 
characteristics (like charge, polar surface area, etc.) of the molecule will be more useful.

As can be seen in Table 3, all ML models contains descriptors classified as electronics 
(FPSA-1, NHBDon, RNCG, etc.), but also contains topological descriptors related with elec-
tronic characteristics of the compounds like, for example, autocorrelation descriptor of 
charge (ATSc4) and Wiener polarity number (WPOL). Other descriptors that describe molec-
ular characteristics are also present in the ML models, for example, ALogP to describe hydro-
phobicity as well as related topological descriptor such as: fragC, a descriptor of fragment 
complexity and other descriptors of chain or path, like WTPT-x, CxSPx, VP-0, SPC-4, etc. Others 
important structural features are the shape, size and spatial distribution of the atoms, among 
them the geometrical descriptors. GRAV-x encodes this information (present in the models 
developed with IBk and MLP); also several topological descriptors give information about 
these features, for instance some Kappa shape indices (Kier), the molecular distance edge 
descriptors (MDEC-33 and MDEO-11), as well as the hybrid indices based in Burden eigen-
values (BCUT), which not only uses a 2D approach, but also a 3D approach, to account for 
geometric and inter-atomic distances. As we pointed out, each ML-based model uses several 
molecular descriptors that codify different structural features of the molecules, which are 
important to describe the four MOAs of phenolic compounds.

Testing the predictive power of classification models using an external test set

According to Golbraikh and Tropsha [63], the only way to establish a reliable model is by 
means of external validation with some data that did not take part in the training, and, hence, 
it can measure the prediction ability and check the chance correlation. In this sub-section, 
we compare the behaviour of ML-based QSAR models obtained in the present report. The 
predictions of all ML models in the external test set were used for this purpose. In this work, 

Table 3. Descriptors used in the development of ML-based models.

aClassification given by CDK programme.

Classificationa J48 IBk MLP SVM-SMO
Constitutionals nAtomP ALogP
topologicals ATSc4 WTPT-3 VP-0 ATSm4

SP-4 WTPT-4 WTPT-3 WTPT-5
WTPT-5 WTPT-5 SCH-7 Kier3
Kier2 C2SP2 VC-3 MDEO-11
WPOL C3SP2 MDEC-33 SPC-4
fragC

Electronics FPSA-1 DPSA-3 nHBDon FPSA-3RNCG FNSA-1nHBDon
Hybrids BCUTw-1l BCUTp-1l
Geometricals GRAV-1 GRAV-6
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in addition to the learning set used to fit the models, an external test set selected from a 
previous report by Cronin et al. [64], in which the assigned mechanism of action was per-
formed according to Aptula et al. [12], was used to validate our models. We also remove 
duplicates and those compounds with a MOA (pro-redox cycler) not covered by the TS of 
221 phenol derivatives. We performed an assessment of the applicability domain and found 
that all compounds of the test set were inside of the AD of the models.

The models developed with J48 and SVM-SMO showed an accuracy of 95.24% (only one 
compound misclassified) for the test set, while the models developed with MLP and IBk 
achieved an accuracy of 90.48% (misclassifying two compounds). Tables 3 and 4 give the 
performance of models for each MOA and the observed and predicted class for each com-
pound in the external test set, correspondingly. The parameter fprate was in all cases lower 
than 6%; according to these results we can say that our four ML-based models have a good 
predictive power. Notice that three of these four models (IBk, MLP and SVM-SMO) fail to 
predict the MOA of 5-methyl-2-nitrophenol, which is classified according to the rules as polar 

Table 4. Testing the predictive power of classification models.

*All values are expressed as a percentage (%).; Between parentheses is the number of compounds for each MOA.

Method

MOA 1 (16) MOA 2 (1) MOA 4 (4)

fprate-P* AURCP AcP* fprate-P* AURCP AcP* fprate-P* AURCP AcP*
J48 0.0 1.000 100.0 5.0 0.950 100.0 0.0 0.853  0.75
IBk 0.0 0.969  93.8 0.0 1.000 100.0 5.9 0.963  0.75
MLP 0.0 1.000  87.5 0.0 1.000 100.0 5.9 1.000 100.0
SVM-SMO 0.0 1.000  93.8 0.0 1.000 100.0 5.9 0.971 100.0

Table 5. MOA prediction results (using the best models trained acting all data as TS) employing an ex-
ternal test set.

aMOA as reported Cronin et al. [55].
bMOA predicted by the best model of each technique.

No Name

MOAb

MOAa J48 IBk MLP SVM-SMO
1 2-Ethylhexyl-4-hydroxybenzoate 1 1 1 1 1
2 4-Propyloxyphenol 1 1 1 1 1
3 5-Methyl-2-nitrophenol 1 1 4 4 4
4 2,2′,4,4′-Tetrahydroxybenzophenone 1 1 1 3 1
5 3-Hydroxydiphenylamine 1 1 1 1 1
6 Benzyl-4-hydroxyphenyl ketone 1 1 1 1 1
7 2-Hydroxybenzophenone 1 1 1 1 1
8 2-Hydroxydiphenylmethane 1 1 1 1 1
9 Butyl-4-hydroxybenzoate 1 1 1 1 1
10 n-Pentyloxyphenol 1 1 1 1 1
11 Isoamyl-4-hydroxybenzoate 1 1 1 1 1
12 4-Cyclohexylphenol 1 1 1 1 1
13 4-(4-Bromophenyl)phenol 1 1 1 1 1
14 Nonyl-4-hydroxybenzoate 1 1 1 1 1
15 4-Bromo-2-fluoro-6-nitrophenol 2 2 2 2 2
16 2-Bromo-2′-hydroxy-5′-nitroacetanilide 4 2 2 4 4
17 2-Fluoro-4-nitrophenol 4 4 4 4 4
18 4-Fluoro-2-nitrophenol 4 4 4 4 4
19 4-Bromo-2-nitrophenol 4 4 4 4 4
20 4-(4-Hydroxyphenyl)-2-butanone 1 1 1 1 1
21 Benzyl-4-hydroxybenzoate 1 1 1 1 1
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narcotic, but is classified by the models as soft electrophile. In this sense, we can say that 
this compound has certain characteristics in their structure; for example, it has a nitro group 
(as soft electrophile) but lacks of halogen substituent [12], so it is classified by the rules as a 
polar narcotic. Something similar happens with 2-bromo-2'hydroxy-5'nitroacetanilide com-
pound soft electrophile according to assigned MOA by rules, which is wrongly predicted by 
the models J48 and IBk as a respiratory uncoupler, but which has more than one halogen 
group [12].

A general inspection of these results demonstrates that all models achieved rather good 
performance in the external test set, which means that the classification models are reliable. 
Although a larger database must be evaluated in future works, finally the results evidenced 
that the models present good predictive capabilities (for more details see Table 5). All these 
results validate our models, making them useful tools in the prediction of ecotoxicological 
potential of phenols and related compounds.

Conclusions

Prediction of the mechanism of toxic action of phenols attracts great scientific interest, 
because the increasing use of these compounds with various intentions makes its ecotox-
icicity evaluation necessarily. In the prediction, the MOAs of new compounds ‘in silico’ 
approaches emerged to be especially worthwhile in both terms of financial cost and time 
consumption by exploring the usefulness of QSAR methods. In this report, we made use of 
the CDK’s descriptors and different ML approaches as J48, IBk, MLP and SVM-SMO to find 
QSAR models that can describe the mechanism of toxic action, classifying the chemicals 
into polar narcotics, respiratory uncouplers, pro-electrophiles and soft electrophiles. All 
ML-based QSAR models showed in general very good performances in TS, CV study and the 
external test set. These ML techniques were demonstrated to be better than LDA models 
previously developed by Aptula et al. [12]. The contribution of this work in uncouplers and 
pro-electrophiles correct identification using ML techniques is striking with respect to our 
and Aptula et al.’s [12] models using LDA. Finally, the contribution of this report is rather 
encouraging because it represents better results for modelling the mechanism of toxic action 
of phenols using ML models and could increase the practicality of data mining procedures 
of chemical databases for the discovery or identification of the mechanism of toxic action 
of new phenol derivatives.
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