
Clone-Based Variability Management
in the Android Ecosystem

John Businge,∗ Moses Openja,∗ Sarah Nadi,† Engineer Bainomugisha,‡ and Thorsten Berger§
∗Mbarara University of Science and Technology, Mbarara, Uganda

†Makerere University, Kampala, Uganda
‡University of Alberta, Edmonton, Canada

§Chalmers | University of Gothenburg, Gothenburg, Sweden

Abstract—Mobile app developers often need to create variants
to account for different customer segments, payment models or
functionalities. A common strategy is to clone (or fork) an existing
app and then adapt it to new requirements. This form of reuse has
been enhanced with the advent of social-coding platforms such as
Github, cultivating a more systematic reuse. Different facilities,
such as forks, pull requests, and cross-project traceability support
clone-based development. Unfortunately, even though, many apps
are known to be maintained in many variants, little is known
about how practitioners manage variants of mobile apps.

We present a study that explores clone-based reuse practices
for open-source Android apps. We identified and analyzed
families of apps that are maintained together and that exist
both on the official app store (Google Play) as well as on
Github, allowing us to analyze reuse practices in depth. We
mined both repositories to identify app families and to study
their characteristics, including their variabilities as well as code-
propagation practices and maintainer relationships. We found
that, indeed, app families exist and that forked app variants
fall into the following categories: (i) re-branding and simple
customizations, (ii) feature extension, (iii) supporting of the
mainline app, and (iv) implementation of different, but related
features. Other notable characteristic of the app families we
discovered include: (i) 73 % of the app families did not perform
any form of code propagation, and (ii) 74 % of the app families
we studied do not have common maintainers.

Index Terms—software variants, mobile apps, app families,
Android, software ecosystems

I. INTRODUCTION

Software reuse is essential to keep up with the pervasiveness

of software in our everyday lives. The advent of social coding

platforms and version-control systems such as Github and

Bitbucket has made large-scale software reuse more systematic

by providing different facilities, such as pull requests and cross-

project traceability, to allow fork-based development [1]. In

the latter, developers realize new features or system variants by

forking a repository, making changes on their own fork, and

propagating changes back to the repository from which they

forked, via pull requests (known as “upstream” propagation).

Mobile apps often need to exist in different variants [2],

[3], accounting for different users and markets, or non-

functional requirements, such as hardware, power consumption,

performance or fidelity. As such, these variants typically

share common and variable features [4], [5], and need to

be maintained in parallel. Unfortunately, despite relatively

simple configuration mechanisms, the Android platform does

not offer more sophisticated variability management concepts,

including those from methodologies such as software product

line engineering [3], [6], which advocates integrating all

variants into a platform. Instead, when such concepts are

not available or applicable, a common form of variability

management, known as clone&own [7], is to copy and adapt

existing variants, and propagate changes (e.g., new features

or bug fixes) to maintain and evolve the variants. In fact, as

studies show, there is substantial software reuse in the Android

ecosystem [2], [8], [9] through cloning. These observations

suggest that, when variants of apps exist and need to be

maintained, that the majority is done using clone&own. Yet,

the practices applied by mobile-app developers are unknown—

hindering the improvement of such practices.
We address this gap with an exploratory study on variant

management practices in one of the largest app ecosystems

in existence today: Android apps. We focus on apps that

are available in the official app store, Google Play, and that

host their source code on Github. This allows identifying

app families as well as studying the variability management

practices in depth. We consider an app family as a collection of

apps on Github that are maintained together, typically consisting

of a mainline variant (MLV) and its forked variants (FVs),

representing existing variants of the mainline app.

Our study is guided by the following research questions:

RQ1 What are the characteristics of Android app families?
We investigate general characteristics of open-source

apps that belong to an app family, including the app

category they belong to and the pace of development and

maintenance of the FVs with respect to the MLV.

RQ2 How are app families maintained and co-evolved?
We strive to understand how code is propagated between

variants of the same family. For example, are pull requests

used as the main propagation technique? Is code only

propagated between the FVs and the MLV or are there

additional propagations between other FVs?

RQ3 How diverse are the contributors in Android app families?
We investigate whether the FVs are typically created and

controlled by new developers or whether they are still

governed by the MLV developers.

RQ4 What are the various types of variations or customizations
that lead to the creation of an app family?

Understanding the reasons behind creating a fork of

625

2018 IEEE International Conference on Software Maintenance and Evolution

2576-3148/18/$31.00 ©2018 IEEE
DOI 10.1109/ICSME.2018.00072

Apps

9008007006005004003002001000

N
um

be
r o

f A
ct

iv
e

Fo
rk

s

625

125

25

5

1

0

Fig. 1: Number of active forks across the considered 1,890

apps (y-axis in log scale)

another app can help us understand the types of reuse

that occur in the Android ecosystem. For example, does

an FV app typically add small functionality to the MLV

app or does the FV use the MLV as a building block for

an app with a completely different focus?

In our study, we found that app families actually exist, even

though, there is little code propagation using typical Github

facilities. When there is, then mainly from the MLV to the FVs.

To the best of our knowledge, our work is the first to explore

variability management practices and app-family characteristics

on a social-coding platform such as Github.

We proceed by presenting our study design—especially how

we identified app families—in Section II. We present our results

for the four research questions in Sections III to VI, first

providing the research-question-specific methodology, then the

respective results. We discuss threats to validity in Section VII,

related work in Section VIII, and conclude in Section IX.

II. STUDY DESIGN

Our aim is to identify Android app families in order to study

their characteristics and development practices.

A. Identification of App Families

Recall that we defined an Android app family as a collection of

apps on Github that are maintained together, typically consisting

of a MLV and its FVs. To identify all app families that exist

on Github and that are also published on Google Play, we first

mined the MLVs and their corresponding FVs on Github, then

we found the corresponding links of these MLVs and FVs on

Google Play. We identified app families as follows.

1) Using GitHub’s Rest API v3 we identified a total of

55,939 repositories with the following criteria: (1) contains

the word “Android” in repository name, description or

readme.md file; (2) is not a fork; (3) is written in a

programming language; (4) has been forked at least twice;

and (5) was created no later than 31-12-2017. We used the

criteria of having at least two forks to reduce the chance

Number of Forks

25002000150010005000

N
um

be
r o

f U
ni

qu
e

C
om

m
its

15,625

3,125

625

125

25

5

1
0

Fig. 2: Number of unique commits (compared to the mainline

app) in the 12,356 active forks (y-axis in log scale)

of finding student assignments, which could pollute our

results [10].

2) To assure that the repositories we identified are

indeed real Android apps, we searched for an

AndroidManifest.xml file in each repository and, if

it existed, we identified the package name indicated in

the file. We then looked up the app with the extracted

package name from Google Play. This step filtered out

more repositories from our list, since some repositories

may have no manifest file or might have no corresponding

app on Google Play. We obtained 5,865 repositories

representing an actual Google Play app.

3) Next, we manually looked at the list of the 5,865 apps

to identify any apps sharing the package name, which

would mean they are linked to the same app on Google

Play. We removed 330 apps that have duplicate package

names, leaving 5,535 apps. We speculate that duplicate

package names are a result of repositories cloning other

apps’ source code and including it in their own.

4) From the remaining 5,535, we eliminated apps with less

than six commits in their lifetime, according to the median

number of commits in GitHub projects found by prior

work [11]. After this preprocessing step, we were left

with 4,634 apps.

5) We then eliminated apps without active forks—that is,

forks that did not have one single commit after the fork

creation date. We were left with 2,423 apps, which have

18,446 active forks altogether. For each fork, we identified

commits that are unique to the fork versus those that were

pulled from the mainline app after the fork date. We will

explain how we identified the unique and pulled commits

in Section IV-A. We eliminated apps that did not have at

least one fork with a unique commit. This left us with

1,890 apps. Their distribution is shown in Fig. 1. Figure 2

shows the distribution of active forks and their unique

commits. The forks that did not have unique commits

meant that they only performed cherry-picking and did

626

TABLE I: Collected metrics that characterize Android app families and variant-management practices, arranged by research

question (some metrics used in multiple questions)

Dimension Metric Description

Family Size (RQ1) Variants Number of variants in an app family

Variant Duration Duration Number of weeks since the earliest commit of any variant (since the first fork date) to
latest commit of any variant (duration for an app family).

(RQ1) ForkVariantBacklog Number of weeks a given FV is behind its MLV (MLV’s last commit date minus the
FV’s last commit date).

Inactivity Number of weeks a given variant has spent without making a commit until the stopping
date (31-12-2017). We consider the median statistics to describe all the variants (inactivity
for a family).

Code Propagation PullRequestMLV-FV Number of closed pull requests from the MLV variant to a given FV in an app family.
(RQ2) PullRequestFV-MLV Number of merged pull requests from a given FV to the MLV in an app family.

PullRequestFV-FV Number of merged pull requests from one FV to another FV in an app family.
StartingCommits Number of common commits between a given FV and the MLV. Count of the MLV

commits from the first commit until the given fork date.
StartingCommitscdLOC Number of changed lines of code of the commits in StartingCommits. We use this

metrics to calculate the VariabilityPercentagecdLOC discussed later in this table.
DirectPullComMLV-FV Number of common commits between a given FV and the MLV after the fork date that are

not PullRequestFV-MLV, PullRequestFV-MLV or PullRequestFV-FV (c.f. Section IV-A
for detailed explanation).

PullRequestsComMLV-FV Number of commits associated with merged pull requests from the MLV to a given fork
(i.e., associated with PullRequestFV-MLV)

PullRequestsComFV-MLV Number of commits associated with merged pull requests from the MLV to the FV (i.e.,
associated with PullRequestFV-MLV)

UniqueCom For a given MLV–FV pair, these are the number of commits that are unique to a each
variant.

UniquecdLOC Changed lines of code of the commits in UniqueCom.
MergedCom Total number of common commits between the MLV and FV pair after the fork date

(i.e., common commits between MLV and FVs excluding StartingCommits).
MergedCdLOC Number of changed lines of code of the commits in MergedCom.
VariabilityPercentage Percentage of unique commits in a given FV with respect to the total number of commits

in the FV (i.e., UniqueCom / (UniqueCom +StartingCommits + MergedCom)*100%.
VariabilityPercentage is unique for all FVs.

VariabilityPercentagecdLOC Percentage of changed lines of code of the UniqueCom in a given FV with respect
to the total number of changed lines of code of the unique commits in the FV (i.e.,
UniquecdLOC / (UniquecdLOC + StartingCommitscdLOC + MergedCdLOC)*100%

Code Authorship TotalDevMLV Number of developers who contributed to a given MLV
(RQ3) TotalDevFV Number of developers who contributed to a given FV

TotalDevs TotalDevMLV + TotalDevFV.
CommonDevs Number of common developers between a given pair of MLV and FV in a family.
CommonDevs % Percentage of common developers between a given pair of MLV and FV with respect

to the TotalDevs.

Google Play metadata Category Google Play app category of a given variant
(RQ4) Description Google Play app description of a given variant

not make any modifications in the forked code.

6) One important criteria for an app family is that its

variants actually represent different apps. To consider only

repositories that have at least one fork with a different

package name and are on Google Play, we searched for

the AndroidManifest.xml in each fork repo like we

did for the mainline in Step-2 above. We then searched for

the extracted package names of the forks on Google Play

only if they were different from the mainline package

name. A fork having the same package name as the

mainline means that it did not make modifications to

the mainline package name, implying that it is not yet

been advertised on Google Play. After collecting the forks

that are advertised on Google Play, we also performed

a manual step to eliminate false positives i.e., two forks

advertising the same package names. This would mean

that one of the two forks, or both, have copied code that

contains a manifest file with a package name advertised

on Google Play. We would then look up the descriptions

of both forks on both Github and Google Play, and also

inspect other information, including the Github developer

name and the developer name on Google Play. In some

cases, the Google Play app description would have a

link to the Github repository. Based on this process, we

identified 88 apps that have at least one fork with a distinct

associated app on Google Play. The 88 apps have a total

of 127 forks. Since the 88 mainline apps and their forks

are maintained in parallel on Google Play, we consider

them as app families. This set of 88 app families is the

final data set we used to answer our RQs.

627

Variants

1086420

Fr
eq

ue
nc

y

125

25

5

1

0

Fig. 3: Number of variants per family (y-axis in log scale)

B. Analysis of App Families

To answer the RQs we defined metrics that help answer each

question. Table I provides an overview of all metrics. When

reporting the results for each RQ in the remainder, we will

explain the respective metrics in detail.

We collected the metrics both from GitHub and from Google

Play using scripts we wrote. For the former, we utilized

GitHub’s REST API v3; for the latter, we directly mined

from the Google Play website by creating scripts using the

jsoup library, which helps parsing websites.

III. APP FAMILY CHARACTERISTICS (RQ1)

With RQ1, we investigated general characteristics of apps that

belong to an app family.

A. Methodology

To generally characterize the identified 88 app families, we

looked into the sizes of the families (Variants) and metadata

available on Google Play: the app category and the app

description. We were also interested in understanding how

up-to-date the FVs were with respect to their MLVs, for which

we defined the metric ForkVariantBacklog. For each forked

variant it determines the number of weeks it is behind its MLV

in terms of dates of the respective last commit. A positive

value means the FV is ahead of the MLV.

B. Results

The first step in our analysis consisted of examining various

descriptive statistics of the Android families we identified. The

88 mainline apps of the considered families are written in 4

programming languages with the majority being written in

Java (74), C (8), C++ (4), and Kotlin (2). The 88 mainline

apps have a total of 26 Google Play categories. The categories

with the highest number of mainline apps include: tools (19),

productivity (11), communication (9), education (7), finance

(7), and entertainment (5). The 127 fork variants of the 88

mainline apps had a total of 21 categories on Google Play that

are not necessarily a subset of the 26 categories of the mainline

apps. The highest frequency of fork variant categories include:

tools (27), finance (18), productivity (15), communication (14),

education (7), and health & fitness (6). From the statistics of

TABLE II: App family metrics (defined in Table I)

Metric Mean Min Median Max

Variants 2.4 2 2 10
Duration 505.6 0 158 2439
ForkVariantBacklog 45.1 -244 32.5 313
Inactivity 233.0 -1473 181 2191
PullRequestMLV-FV 0.2 0 0 10
PullRequestFV-MLV 0.2 0 0 4
PullRequestFV-FV 0.0 0 0 1
TotalDevMLV 30.2 1 7.5 270
TotalDevFV 3.1 1 1 43
TotalDevs 42.2 1 21 272
CommonDevs 1.0 0 0 14
CommonDevs % 6.3 0 0 86
StartingCommits 1411.5 0 463 28924
StartingCommitscdLOC 1.05M 0 201K 7117M
MergedCom 364.2 0 0 25758
MergedCdLOC 102K 0 0 4.8M
PullRequestsComMLV-FV 1.2 0 0 136
PullRequestsComFV-MLV 15.8 0 0 427
UniqueCom 85.7 1 13 2260
UniquecdLOC 114K 20 16K 1.66M
VariabilityPercentage 13.65 0.04 2.76 100
VariabilityPercentagecdLOC 20.58 0.00 9.21 100

the total number of categories presented (i.e., 26 for mainline

variants and 21 for fork variants), we observe that variants in

the same app family can be listed in different Google Play

categories.

Figure 3 shows the distribution of the number of variants

each app family has. We can observe that the figure is right-

skewed, meaning that the majority of the app families has two

variants. In Fig. 4, we present the FV backlog with respect to

the MLV. We observe that we have: (i) a few cases below the

zero line of the y-axis, that is, the FV is ahead of the MLV, (ii)

a few cases along the zero line, that is, there is no significant

difference between updates of the FVs and MLV, and (iii) the

majority of the cases above the zero line, that is, the updates

of MLVs are ahead of the FV on Github.

IV. CODE PROPAGATION IN APP FAMILIES (RQ2)

With RQ2, we determined how often code is propagated

between the variants in a family, using what common practices.

-300

-200

-100

0

100

200

300

400

1 11 21 31 41 51 61 71 81 91 101 111 121

Fo
rk

Va
ria

nt
Ba

ck
lo

g (
W

ee
ks

)

FV

Fig. 4: FV backlog with respect to the MLV: number of weeks

the FV is behind the MLV in terms of the last commit dates.

628

Time

MLV

FV

Fork Date

i

Stopping Date

MergedCom = PullRequestFV-MLV + PullRequestMLV-FV + DirectPullMLV-FV

2 3

iii d ivii c

a b e

StartingCommits MLV UniqueCom PullRequestComFV-MLV

PullRequestComMLV-FVFV UniqueComDirectPullComMLV-FV

1

2 31 i

ciii ed f

f

d1 d2

d1

Fig. 5: Illustration of the different types of commits present in

a FV and its corresponding MLV.

A. Methodology

In Table I, we outlined a number of metrics that relate to code

propagation. We now discuss them in detail. In any variant in

a family, there are two categories of commits: variant-specific

commits (UniqueCom) and common commits. The latter can be

further categorized as: (i) the starting commits between MLV

and FV that exist at the moment of forking (StartingCommits)

and (ii) the merged commits that appear since the fork date

until the last commit before the stopping date (MergedCom).

We now explain how we extracted the metrics UniqueCom,

StartingCommits, and MergedCom from GitHub. Figure 5 illus-

trates the mentioned kinds of commits (and others, explained

shortly) for MLV and FV. Recall that all metrics are summarized

in Table I.

• UniqueCom: In Fig. 5, the UniqueCom commits for the

MLV are a, b, and e, while those for the FV are ii and

iv. To extract these UniqueCom for MLV and FV, we

collected and compared sets of commits of the MLV and

the FV since the fork date to the last commit before the

stopping date.

• StartingCommits: In Fig. 5, the StartingCommits are 1,

2, and 3. These existed in the MLV at the time of the

fork creation, which means these are the commits the fork

starts with. To extract these commits, we collected all the

commits since the first commit on MLV until the fork
date.

• MergedCom: In Fig. 5, MLV and FV have the same

MergedCom: i, iii, c, d, and f . For a given FV and the

corresponding MLV, we considered a commit as merged

when it appears in both FV and MLV after the fork date.

Looking at MergedCom only is not enough, since we also

want to understand the direction of the code propagation. On a

social coding platform such as Github, there are two ways how

code can be propagated: merged pull request (PR) commits or

direct pull commits.

• Merged PR commits: In a family of app variants, pull

requests can be sent from any variant by a commit author
and received in another variant by a commit merger.

We can establish three directions from the sender of

the PR to its receiver: from the mainline to the fork

(PullRequestMLV-FV), from the fork to the mainline

(PullRequestFV-MLV), and from a fork to another fork

(PullRequestFV-FV). The former two directions are illus-

trated in Fig. 5. We can see in the figure that only one com-

mit c happens through PullRequestMLV-FV, while two

commits i and iii happen through PullRequestFV-MLV.

• DirectPullComMLV-FV: These are commits that were

merged into a variant by being pulled from one variant

and pushed into another variant. This can be achieved

in two ways: syncing a fork1 or merging an upstream

repository into a fork.2 In the latter case, only a subset

of commits may actually be merged (cherry picking).

Like the pull requests, direct commits may appear in two

directions. However, unlike pull requests, it is not possible

to identify which variant a direct pull commit came

from. This is because of the nature of distributed version-

control systems such as git: commits can be in multiple

repositories, but there is no central record identifying the

commits’ origin. Since it is common for commits to be

pulled from the mainline and pushed into the fork repo

as a result of the fork trying to keep in sync with the new

changes in the mainline, we made an assumption that all

the direct pull commits we find in a fork are pulled from

the mainline variant and pushed into the fork variant. Thus,

we defined DirectPullComMLV-FV. Looking at Fig. 5 we

can identify the two remaining common commits d and

f as DirectPullComMLV-FV.

• Fork variability percentage: Here we want to deter-

mine how different the FV is from the MLV in

terms of the commits/changed lines of code since the

fork date. We defined a fork variability percentage

for the fork commits as UniqueCom/(UniqueCom +
StartingCommitsMergedCom) × 100 and for the fork

changed lines of code as UniquecdLOC/(UniquecdLOC+
StartingCommitscdLOC + MergedCdLOC)× 100.

B. Results

The results for RQ2 are presented in Figures 6 to 9.
a) Direct pull commits: Figure 6 presents a boxplot

showing the distribution of the commits that are cherry-picked

from the MLV by the FVs. From the figure, we observe that

the median of the cherry-picked commits is at the mark zero.

This tells us that the majority of the FVs do not perform cherry

picking of commits from the MLV. More specifically, 80 of

the 127 FV did not perform any cherry picking of commits

since they have been created.
b) PullRequests: Figure 7 shows the distribution of the

merged pull requests from MLV to FV in the left histogram,

and from FV to MLV in the right histogram. The figure shows

that there are a few merged pull requests in both directions.

For MLV-FV, we observe a total of 15 merged PRs being sent

1https://help.github.com/articles/syncing-a-fork/
2https://help.github.com/articles/merging-an-upstream-repository-into-your-

fork/

629

DirectPull

37

7

78,125

15,625

3,125

625

125

25

5

1
0

Fig. 6: Distribution of the direct pull commits

(DirectPullComMLV-FV) that were cherry picked from

the MLV to the FVs (y-axis in log scale)

128 64 32 16 8 4 2 1 0 12864321684210

PullRequest_FV-MLVPullRequest_MLV-FV

Fr
eq

ue
nc

y

12

10

8

6

4

2

0

Frequency

12

10

8

6

4

2

0

Fig. 7: Distributions of the number of pull requests (MLV-to-

FV and FV-to-MLV) that were merged between the FV and

the MLV (x-axis in log scale)

128

64 32 16 8 4 1 0

Frequency

400

300

200

100

0128

6432168410

PullRequestCom FV- MLVPullRequestCom MLV- FV

Fr
eq

ue
nc

y

400

300

200

100

0

Fig. 8: Distributions of the number of pull request commits

(MLV-to-FV and FV-to-MLV) that were sent from the fork

variants to the mainline variant (x-axis in log scale)

Percentage

120

100

80

60

40

20

0

VariabilityPercentage CdLOCVariabilityPercentage Com

Pe
rc

en
ta

ge

120

100

80

60

40

20

0

80 60 40 20 0 806040200

Fig. 9: Distribution of the VariabilityPercentage (left histogram)

and the VariabilityPercentagecdLOC (right histogram)

from five of the 88 MLVs to five of the 125 FVs. For FV-MLV,

we observe a total of 16 merged PRs being sent from ten of

the 127 FVs to ten of the 88 MLVs.

We were surprised to see PRs being sent from the mainline

app to the fork variants, since typically the opposite direction

is the more expected route. We decided to investigate this

observation more closely. For a given pull request, we identified

the developer who initiated the PR and the developer who

merged it. In Fig. 5 and in Section V we illustrate how we

differentiated the developers in the MLV–FV pair of variants.

We discovered that all of the 15 PullRequestsComMLV-FV
were either initiated by a common developer (defined shortly,

in Section V), who contributes to both MLV and FV, or

by a developer who is only in the FV. In all the 15

PullRequestsComMLV-FV, we did not find any PR that was

initiated by a developer who had only authored commits in

the MLV. This means that the FV maintainers would go to the

MLVs and initiate a PR with the commits they are interested in

and send it to the FVs they maintain. The described scenario is

another form of cherry-picking we discovered where some

developers prefer to use PRs instead of direct pulling of

commits described above. For the results of merged PRs from

one FV to another FV, we only found one merged PR.

Looking at only the number of PRs does not give the whole

picture of the size of the code propagated between the variants.

To understand the size of the propagated changes, we also look

at the number of commits contained in the merged PRs. Fig. 8

shows the distribution of these commits. We observe that we

have large numbers of commits contained in the merged PR of

FV-MLV when compared to those of MLV-FV. For example

in the right histogram showing PullRequestComFV−MLV

in Fig. 8, we observe that there is one FV that propagated 427

commits to the MLV

c) Fork Variability Percentage: In Fig. 9, we present a

stacked histogram of the distribution of the variability indicies

of the FVs in relation to their corresponding MLV. The left

histogram shows the results of the percentage of FV variability

based on the commits and the right histogram shows the

corresponding changed lines of code (LOC) of the commits.

From the results presented in Fig. 9, we observe that both the

distributions are all right-skewed. This means that the majority

of the FVs do not differ so much from the MLV in terms of

the UniqueCom and their corresponding changed LOC. From

the statistics of MergedCom, we observe that 64 of 88 app

families (i.e., 72.7%) have values of zero meaning that the

variants in those families did not perform any form of code

propagation.

V. CONTRIBUTOR DIVERSITY IN APP FAMILIES (RQ3)

With RQ3, we investigated who contributes to app families,

for instance, whether the app variants are typically controlled

the MLV developers or by new developers.

A. Methodology

We now describe how we collected data to investigate the

commonality of the developers between a MLV and its FVs.

630

Given two variants in an app family, we define a common
developer as one who has authored at least one commit in each

of the two variants. Recall that in Section IV-A and Fig. 5, we

illustrated various types of commits that exist between MLV

and FV, and which may result from different code propagation

strategies. We can further identify in which variant a given

commit was authored. In Fig. 5 we illustrate the commits that

were authored in the FV and MLV can be divided as follows:

• FV Commits: In a MLV–FV pair, these are commits that

were authored in a FV. The FV commits are the sum FV-

UniqueCom and PullRequestsComFV-MLV. From Fig. 5,

the FV commits are i, ii, iii and iv.

• MLV Commits: In a MLV–FV pair, these are commits

that were authored in a MLV. The MLV commits are the

sum of MLV-UniqueCom, PullRequestsComFV-MLV, and

DirectPullComMLV-FV. From Fig. 5, the MLV Commits

are 1, 2, 3, 4, a, b, c, d, e, f .

For all app families, we collected the FV Commits and the

corresponding MLV commits. We then extracted the developers

from the commit details. The commit details we collected

included author name, e-mail, login name, and changed

lines of code. After collecting the commit details, through

manual inspection, we discovered that some contributors of

the applications use more than one account for their commits,

which causes them to appear as different contributors. To

address this issue, we performed name merging to ensure that

our data is not polluted with duplicate information that would

introduce noise. We merged the details of two contributors

into one using the heuristics employed by Businge et. al [12]

in a related study of code authorship and fault proneness.

Specifically, two contributors are merged into one if (a) they

possess the same login ID, (b) possess different login ID but

possess the same full names, or (c) possess both different login
ID and full names but have the same e-mail prefix (i.e., prior

to the email domain name).

In Table I, we outlined the five metrics TotalDevMLV,

TotalDevFV, TotalDevs, CommonDevs, and CommonDevs %),

which relate to code authorship. We used these metrics to

determine the commonality between the developers of MLV

and FV. We illustrate the methodology used to compute the

percentage of commonality of developers i.e., the value of

CommonDevs %, with an example in Fig. 5. The figure

comprises a total of three developers: FV.d1, who authored

commits i,ii,iii, and iv; MLV.d1, who authored commits 1,

2, 3, a, and b; and MLV.d2, who authored commits c,d,e and

f . So, TotalDevs = 3. Developers MLV.d1 and FV.d1 refer

to the same developer who has contributed commits in both

the MLV and the FV. This means that we have one common

developer but the number of times it appears in Fig. 5 is two

(i.e., count(CommonDevs) = 2).

In Fig. 5, the percentage of common

developers–CommonDevs % computed as the

count(CommonDevs)/TotalDevs × 100 would be

2/3× 100 = 66.7%.

TotalDevsMLV

300250200150100500

60

50

40

30

20

10

0

Fig. 10: A histogram showing the distributions of the total

developers of the MLV–TotalDevMLV for the 88 MLV.

TotalDevsFV

50403020100

60

40

20

0

Fig. 11: Distribution of the total numbers of developers of the

FV (TotalDevFV) for the 127 FVs

B. Results

Figure 10 andFig. 11 show the distribution of TotalDevMLV in

the 88 MLVs and TotalDevFV in the 127 FVs, respectively.

As can be seen from the figures, the number of developers in

both the MLV and FV are right-skewed (i.e., mean>median),

which means that most of the apps (whether MLVs or FVs)

are developed and maintained by a few developers. Looking at

Fig. 12, we also observe a left-skewed distribution of common

developers between the MLVs and the FVs. This indicates that

CommonDevs%

100806040200

120

100

80

60

40

20

0

Fig. 12: Distribution of common developers between the MLV

and the FVs for the 127 pairs of MLV–FV

631

there are many MLV-FV pairs that have no common developers.

In fact, 94 of the 127 MLV-FV pairs (74%) do not have any

common developers.

VI. TYPES OF REUSE IN APP FAMILIES (RQ4)

With RQ4, we wanted to understand the types of reuse that

occur and what kind of variations drive the forking of apps.

A. Methodology

We manually investigated a sample of our 88 identified families.

To sample, we first ordered the families by their sizes (number

of variants) and then used stratified sampling to select two

families from each variant frequency. For each frequency, if

more than two families existed, we randomly selected two. If

two or less families existed, we analyzed whatever existed.

We obtained eleven families. Specifically, our sample con-

tained one family with ten variants, two families with six

variants each, two families with five variants each, two families

with four variants each, two families with three variants each,

and two families with two variants each.

For each app family, we qualitatively compared the FVs and

the MLV by looking at their app descriptions on Google Play

and Github, as well as their additions and customizations in

the new commits after the fork date on Github. We investigated

the app families along the following criteria:

• Criterion 1: Variant Domains: The different variants in

the app family belong to the same category listed on Gog-

gle Play. These categories comprise: tools, productivity,

health & fitness, and so on.

• Criterion 2: Cherry-picking: The different FVs in a

family perform cherry-picking of commits from the MLV.

• Criterion 3: Backward propagation: The FVs in an app

family performed backward code propagation to the MLV

through pull requests.

• Criterion 4: Shared developers: All pairs of MLV–FV

in an app family have common developers.

• Criterion 5: User Competition: Variants are competing

for the same users (explained shortly) on Google Play.

• Criterion 6: Significant Differences: The FVs ’signif-

icantly’ added or changed functionality of the MLV. If

the UniqueCom commits are just simple customizations

of the MLV, then the answer is No. Otherwise, for

additions of new features, bug fixes, and so on, it is

Yes. We investigated this criterion by first looking at the

FV description on Google Play to determine the goal

and nature of the app, and then manually inspecting

the UniqueCom commits of the FV to identify the

development activities that occurred.

B. Results

Table III summarizes the results for RQ4, showing the findings

for the six criteria for each sampled app family.

We identified four categories of reuse, which we explain

in the following four subsections, referring to Table III for

additional criteria when needed. Note that some app families

fall into more than one category.

1) Re-branding & Customizations: In this category,

FVs make simple modifications to the MLV code and

are then published on Google Play. Modifications may

include changing the user interface, XML/Java pack-

age names, logos, server names, and so on. The app

families we identified in this category include the

MLVs: bitcoin-wallet/bitcoin-wallet, HashEngineering/dash-
wallet, opendatakit/collect, DigitalCampus/oppiamobile-
android, shadowsocks/shadowsocks-android, and own-
cloud/android.

In Table III, we see that all the four app families in this reuse

category do not have significant differences in the functionality

they provide (Criterion 6). On the other hand, there are some

differences with respect to Criterion 5 which looks at whether

the variants compete on the app store or not. We discuss this

aspect further:

• Competing variants: In Table III, column–(Criterion5) we

present seven families whose variants could possibly be

competing for the same users. For example, variants in the

app families of the MLVs bitcoin-wallet/bitcoin-wallet,
HashEngineering/dash-wallet, and owncloud/android,

the variants are possibly competing for the same

users on Google Play. For example, the customiza-

tions made in the FVs of bitcoin-wallet/bitcoin-wallet
and HashEngineering/dash-wallet include changes to

the transaction fees. Another example is the FV blau-
cloud/android of owncloud/android, which made cus-

tomizations to provide a free app on Google Play, since

the MLV is a paid app.

• Non-Competing variants: In Table III, column–(Criterion5)

we present five families whose variants may not be

competing for the same users. For example, in two

app families of the MLVs: opendatakit/collect and

DigitalCampus/oppiamobile-android, the variants are

likely not competing for the same users on Google

Play. For example, in one app family, the MLV targets

specific user needs in one country, and the FVs reuse the

functionality of the MLV by customizing the app to target

related user needs in other countries. In a specific example

in an app family, the MLV DigitalCampus/oppiamobile-
android is a mobile learning application for students

of Wits DigitalCampus in South Africa to run training

content, quizzes, and video content offline, while the FV

CCP-ICT/oppia-mobile-android customized the MLV to

deliver the same content to health workers in Nepal. In an-

other example, the MLV opendatakit/collect is a generic

data collection app, while the FV anggabayu21/collect
is a data-collection app for customizing the MLV function-

ality to collect specific data for disaster risk management.
Another FV kobotoolbox/collect customized the MLV to

collect data in humanitarian emergencies.

2) Implementation of Different, but Related Features: In this

reuse category, FVs in the app families implement different but

related features from the MLV. We identify two app families

with the MLVs shagr4th/droid48 and k9mail/k-9 in this

632

TABLE III: Summary of findings for RQ4

Family (MLV) Reuse Category Num. of Variants Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5 Criterion 6

bitcoin-wallet/bitcoin-wallet RC 10 Yes Yes & No Yes & No Yes & No Yes No
opendatakit/collect RC 6 No Yes & No Yes & No Yes & No No Yes
DigitalCampus/oppia-mobile-android RC 6 Yes & No Yes Yes Yes No No
owncloud/android SM, FE 5 Yes & No Yes & No Yes & No Yes & No Yes & No No
HashEngineering/dash-wallet RC 5 Yes No No Yes & No Yes No
mendhak/Google Playlogger FE 4 No Yes & No No No No Yes
k9mail/k-9 FE, DRF 4 Yes Yes & No No No Yes Yes & No
XCSoar/XCSoar SM, FE 3 Yes Yes No Yes Yes Yes & No
shadowsocks/shadowsocks-android FE, RC 3 Yes Yes No No Yes Yes & No
wordpress-mobile/WordPress-Android FE 2 No Yes Yes No No Yes
shagr4th/droid48 DRF 2 Yes No No No Yes No

Criterion1 Are the variants in the same domain (Google Play category)?
Criterion2 Have the FVs performed cherry-picking of commits?
Criterion3 Have the FVs performed backward code propagation?
Criterion4 Do the MLV and FVs have common developers?
Criterion5 Is there a possibility of variants competing for users on Google Play?
Criterion6 Are there any significant differences in functionality between MLV and FV?
Yes & No Yes for some variants, No for others
RC Re-branding & Customizations
DRF Implementation of different, but related features
FE Functionality extension
SM Support for MLV

category. A specific example, the FV czodroid/droid48sx
is an emulator for the HP 48 SX scientific calculator, which is

a modified version of the MLV shagr4th/droid48, an emulator

of the HP 48 scientific calculator.

As seen in Table III, all app family variants in this reuse

category are in the same domain and also all the variants are

likely competing for the same users on Google Play.
3) Functionality Extension: This category of reuse

involves FVs that extend the functionality of the

MLV. We identified the following app families in

this reuse category: mendhak/gpslogger, k9mail/k-9,

shadowsocks/shadowsocks, XCSoar/XCSoar, and

wordpress-mobile/WordPress-Android. For example, the

MLV mendhak/gpslogger is just a very basic GPS tracker

app with basic functionality. The FVs dkm/gpslogger
and itbeyond/EOTrackMe_Android reuse the MLV’s

functionality and extend it with additional functionality to

perform sophisticated tracking. Another example is the FV

micwallace/visualvoicemail, which implements a new visual

voice mail feature that is not offered in the MLV k9mail/k-9.
4) Supporting the MLV: We also found FVs that simply offer

additional support to the MLV. We identified two app families in

this reuse category: owncloud/android and XCSoar/XCSoar.
For example, the FV grogg/ownClient is a workaround app

to resolve a known bug in Android 4 devices that affects

the MLV owncloud/android. Another example is the FV

staylo/XCSoar, a testing app used by the developers of the

MLV XCSoar/XCSoar to test new features of the MLV. The

FV is not intended to be used by normal users.

VII. THREATS TO VALIDITY

Internal Validity. The major threat that could affect the

findings are the possible errors as a result of the few manual

steps we carried out during our app family data collection.

However, during our qualitative analysis of the 11 app families

having a total of 50 variants in Section VI, we did not find any

MLV or FV that were wrongly linked to Google Play. This

gives us confidence in our data collection steps.

Construct Validity. We defined various metrics. Threats to

the construct validity are that they are not suited to answer

our research questions; that they are not well-defined; or that

they are incorrectly calculated. We addressed these threats by:

first formulating relevant research questions and then defining

the metrics; cross-checking the metrics among the authors,

including refining and re-formulating them; and verifying the

resulting statistics among the authors. Especially the latter

revealed smaller inconsistencies we fixed. Also note that

the metrics are defined over different entities. For instance,

some metrics are calculated for entire families, while others

are calculated for all FVs or apps. We made sure that the

entities for which the metrics are calculated are clarified in

the definition, for instance, using the formulation “a given FV,”

which indicates calculation of the metric for individual FVs (so,

we provide summary statistics for the respective distribution

of the metric over all FVs).

External Validity. A threat is that our results may not

generalize to other app families on Google Play. In fact, our

scope was focused on open-source apps that are hosted on

GitHub. Likely, commercial closed-source app families may be

maintained differently, and a dedicated study of such families

would be valuable future work, complementing our findings.

Another threat is that our app families may be biased towards

specific app categories. However, as shown in Section III, our

mined apps are well-represented over different app categories.

VIII. RELATED WORK

Only few works study variability management in software

ecosystems. Berger et al. [3] study variability mechanisms

used in successful software ecosystems. Their focus is on

mechanisms that support variability in the whole ecosystem.

The authors analyze five ecosystems, including Android, and

633

identify a spectrum of different mechanisms, related to the

target users of the ecosystem. Interestingly, they do not look

into clone-based variability management, which, as we show,

occurs in ecosystems. In fact, such practices are done in small

subsets of the ecosystems, where developers do not use any

mechanism offered by the ecosystem platform, such as Android.

Schmid et al. [13] discuss variability (“customization”)

mechanisms in service platforms, based on a literature review

and an industry partner’s yard management system. They

describe various forms of variability occurring in the platform,

and identify static and dynamic variability mechanisms suited

for service-oriented platforms.

Seidl et al. [14] introduce an integrated approach to manage

variability in space and time in software families using a

Hyper Feature Model. The authors’ approach allows derivation

of concrete software systems from a software product lines or

software ecosystems configuring both functionality (features) as

well as versions. The authors’ goal is to handle the evolution of

individual variable assets of the software family by performing

the changes on realization assets.

Werber et al. [15] study the application and combination

of methods for uncovering variability models from software

ecosystems from multi-repository structures in the context of

a real-world industrial case study in the health care domain.

All the discussed studies consider ecosystems as collections

of individual software projects, managed within their own

source code repositories and having references to each. The

above authors also discuss variability in the ecosystems and

describe the variability forms occurring in those ecosystems.

Our study differs from the above work in that it explores clone-

based reuse within the Android ecosystem, where smaller app

families are developed and maintained in parallel as they cater

for different end user requirements or hardware specifications.

The study of Li et al. [2] is related to ours in that it mines

Android apps from different market places and presents a

vision of carrying out a large-scale, world-wide and time-

aware study of reuse practices for automatic assessment of

extractive SPL adoption in families of apps. The authors present

their initial prototype of app families clustering method. Yet,

Li et al.’s study classifies a large number of apps as family

members, orders of magnitude more than we actually found.

Even though, we were limited to apps hosted on GitHub, the

fact that we found only 88 families still indicates that actual

(fork-) relationships should be investigated before classifying

apps as members of a family.

Finally, Mojica et al. [8] crawl Google Play to study

software reuse in mobile apps, finding substantial reuse. Their

study indicates that, while these apps benefit from increased

productivity, they are also more dependent on the quality of the

apps and libraries that they reuse. In comparison, we studied

more detailed reuse practices with information mined from

both GitHub and Google Play.

IX. CONCLUSION

We presented an exploratory study of clone-based variability

management in the Android Ecosystem. Our main objective

was to investigate reuse practices of Android app families in

the Android ecosystem on GitHub. We focused on Android

app families whose apps appear on Google Play and are, thus,

used by end users in practice. We mined and analyzed different

properties of the 88 app families we identified from both

GitHub and Google Play repositories in order to determine the

families’ characteristics as well as code-propagation practices

and maintainer relationships. In the 88 app families we studied,

forked variants are created mainly for: (i) re-branding and

simple customizations, (ii) feature extension, (iii) supporting

of the mainline app, and (iv) implementation of different, but

related features. Surprisingly, we observed that 73 % of the

app families did not perform any form of code propagation,

and in 74 % there is no single common developer, all variants

are maintained by different developers.

ACKNOWLEDGMENT

Sida/BRIGHT (project 317) under the Makerere-Sweden bilat-

eral research programme 2015-2020, NSERC, Vinnova Sweden

(project 2016-02804), and the Swedish Research Council

Vetenskapsrådet (project 257822902).

REFERENCES

[1] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in github:
Transparency and collaboration in an open software repository,” in CSCW,
2012.

[2] L. Li, J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon,
“Mining families of android applications for extractive spl adoption,” in
SPLC, 2016.

[3] T. Berger, R. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki, A. Wasowski,
and S. She, “Variability mechanisms in software ecosystems,” Information
& Software Technology, vol. 56, no. 11, pp. 1520–1535, 2014.

[4] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a feature? a qualitative study
of features in industrial software product lines,” in SPLC, 2015.

[5] J. Krüger, W. Gu, H. Shen, M. Mukelabai, R. Hebig, and T. Berger, “To-
wards a better understanding of software features and their characteristics:
A case study of marlin,” in VaMoS, 2018.

[6] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines. Springer, 2013.

[7] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An exploratory study of cloning in industrial software
product lines,” in CSMR, 2013.

[8] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E.
Hassan, “A large scale empirical study on software reuse in mobile apps,”
IEEE Software, vol. 31, no. 2, pp. 78–86, Mar. 2014.

[9] F. Sattler, A. von Rhein, T. Berger, N. S. Johansson, M. M. Hardø,
and S. Apel, “Lifting inter-app data-flow analysis to large app sets,”
Automated Software Engineering, no. 25, pp. 315–346, Jun 2018.

[10] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating GitHub for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, Dec 2017.

[11] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in MSR, 2014.

[12] J. Businge, S. Kawuma, E. Bainomugisha, F. Khomh, and E. Nabaasa,
“Code authorship and fault-proneness of open-source android applications:
An empirical study,” in PROMISE, 2017.

[13] K. Schmid, H. Eichelberger, and C. Kröher, “Domain-oriented cus-
tomization of service platforms: Combining product line engineering and
service-oriented computing,” Journal of Universal Computer Science,
vol. 19, no. 2, pp. 233–253, jan 2013.

[14] C. Seidl, I. Schaefer, and U. Assmann, “Integrated management of
variability in space and time in software families,” in SPLC, 2014.

[15] J. H. Werber, A. Katahoire, and M. Price, “Uncovering variability models
for software ecosystems from multi-repository structures,” in VaMoS,
2015.

634

