Inorganic nutrients and heavy metals in some wild edible plants consumed by rural communities in Northern Uganda: implications for human health

Alfred Nyero1*, Godwin Anywar3 and Geoffrey Maxwell Malinga2

1,2Department of Chemistry, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda.
3Department of Biology, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda.

*Correspondence: a.nyero@gu.ac.ug

ABSTRACT
For centuries, wild edible plant species have sustained local communities across Africa by supplementing households’ diets in seasons of food shortage. Wild edible plants contain inorganic nutrients, which are essential for the proper functioning of organisms. However, their nutritional contents have not been well researched and are generally poorly understood. This study aimed to quantify the levels of inorganic micro-and macronutrients as well as heavy metals (Mg, Ca, Fe, Zn, Cd, Hg and Pb) in selected wild edible plants traditionally consumed among the Acholi communities in northern Uganda, and associated health risks of consuming them. The leaves and young stems of 12 wild edible plants, viz: Acalypha rhomboidea, Asystacia gangetica, Crassocephalum sacrobasis, Crotalaria ochroleuca, Heterotis rotundifolia, Hibiscus cannabinus, Hibiscus sp., Hibiscus surattensis, Ipomoea eriocarpa, Maerua angolensis, Senna obtusifolia and Vigna membranacea were air-dried and crushed to powder. The powders were then macerated using aqua regia solution and analysed in triplicates using the Atomic Absorption Spectrophotometry (AAS). The target hazard
quotient (THQ) of Pb was calculated for non-carcinogenic health risks. Mg, Ca, K, Fe, Zn and Pb were detectable in all the wild edible plants sampled. All inorganic nutrients (mg/100gdw), were below the Recommended Daily Allowance (RDA); Mg (9.4±0.19 to 10.4±0.15), Ca (119±5.82 to 1265±14.9), Fe (3.29±0.02 to 11.2±0.09), Zn (0.52±0.02 to 2.36±0.03). Hg and Cd were below detectable limits in all the samples tested. The content of Pb (0.69±0.11 to 1.22±0.07) was higher than the CODEX and EU limits of 0.1ppm but was below the recommended threshold of 1. The health risk assessment revealed no potential hazards both in children and adults. However, there is a need to study the bioavailability of Pb when the vegetables are consumed due to factors such as indigestion and antinutritional compounds.

Key words: Inorganic nutrients, heavy metals, Target Hazard Quotient, food safety, wild edible plants, Acholi sub-region

1. Introduction

Micronutrient deficiencies remain a significant global public health challenge. More than two billion people in the world suffer from micronutrient deficiencies. This is mainly due to the assimilation of diets that lack essential micronutrients, particularly vitamin A, iodine, iron and zinc (Phillips et al., 2014; Hannah & Max, 2017; Tribaldos, Jacobi & Rist, 2018). The majority of these people live in low- to middle-income countries. The groups most vulnerable to micronutrient deficiencies are young children, pregnant women, lactating mothers and the elderly. This can be mainly attributed to their relatively substantial demand for vitamins and minerals and they are more susceptible to the negative outcome of deficiencies (Black, 2003; Smith et al., 2006). For example, for a pregnant woman, micronutrient deficiencies have been linked to the altered length of gestation, and impaired foetal development and growth, which
can lead to pregnancy loss, greater risk of dying during childbirth, and birth to a small or mentally impaired baby (Gernand et al., 2016). For a young child, micronutrient deficiencies increase the risk of dying due to infections and contribute to impaired physical and mental development.

The consumption of wild edible plants is seen as a sustainable solution to inorganic micronutrient deficiencies. Many communities, particularly in northern Uganda, consume wild edible plants (Acipa et al., 2013; Anywar et al., 2014; Nyero et al., 2021). Wild edible plants are essential in supplementing staple foods by supplying vitamins, minerals, phytochemicals and antioxidants. They have also been reported to be good sources of macro- and micronutrients or trace elements, including B, Cu, Fe, Mn, Mo, Zn, Na, K, Mg, Ca, N, S, and P (Anywar et al., 2017; Cantwell-Jones et al., 2022). Inorganic micronutrients are particularly needed in the body in small amounts to drive essential processes, including energy metabolism, nerve functions and muscle contraction (Maret, 2017). Zinc plays a vital role in transmitting information within and between cells. Therefore, these food plants could help overcome macro-and micronutrient deficiencies since the local community easily accesses them cheaply. However, wild edible plants grow in natural environments. They are therefore vulnerable to contamination with heavy metals like Cd, Ag, Se, Fe, Mg, Zn, Cu, Mo, Pb, Hg and Ni from different sources, including soil and run-off water (Manzoor, et al., 2018). These wild edible plants take up the metals by absorbing them from contaminated soil, water and deposits on plant parts with high exposure to polluted air (Shahsavani et al., 2017; Afonne & Ifediba, 2020). However, given that wild edible plants are regularly and readily consumed in most rural areas because of their abundance, nutrient richness and potential health benefits, their continued consumption may pose severe health risks for the consumers (Volpe et al., 2015). Human exposure to toxic metals is a global environmental health burden.
today (Badea, et al., 2018; Hassanen, et al., 2021). This is because heavy metals can bioaccumulate in living organisms and can be toxic at elevated levels (Maurya et al., 2019; Obeng-Gyasi, 2019). For instance, Pb is one of the systemic environmental toxicants implicated in causing cancer, neurological and cardiac problems, kidney damage, and hemolytic anemia (Schober et al., 2006; Meshref et al., 2014). Lead has been used worldwide for centuries and is present in products such as car batteries, gasoline and paints leading to increased toxicity in humans (Obeng-Gyasi, 2019). In blood, Pb toxicity disrupts the functions of the digestive, circulatory, central nervous, respiratory and reproductive systems and everyday activities of enzymes (Szymanski, 2014). Children are at a higher toxicity risk than adults because their body tissues are still young and susceptible to Pb contamination (Naranjo, 2020). Another heavy metal of concern is Cd because it is mostly responsible for kidney and liver dysfunction, which is indicated by the passing of proteins in urine (Matović et al., 2015; Satarug, 2018). Long-term exposure to Cd may cause numerous types of cancer (Genchi et al., 2020). Knowledge of the inorganic nutrients content in food is needed, especially in the current dietary shift to fast foods, which lack the required nutrients for body health (Jaworowska et al., 2013). Consumption of heavy metals contaminated plants negates the benefits of eating such plants and results in heavy metal poisoning. Investigations of the heavy metals in wild edible plants are thus essential for environmental safety and for reducing the risks associated with their consumption. Hence, there is a need for continuous scientific assessment of the heavy metals in wild edible plants, especially those grown in urban areas with contaminations from industrial and domestic wastes (Visconti et al., 2019). Although certain heavy metals such as Co, Mn, Ni, Cu and Fe are essential components for various biological activities within the body, their elevated levels can cause numerous health consequences to humans. Thus, this study aimed to determine the contents of inorganic...
micro-and macronutrients and heavy metals in selected wild edible plants consumed in the Acholi sub-region.

2. Materials and Methods

2.1. Collection and preparation of plant samples

Voucher specimens of the plant species were collected and taken to the Makerere University herbarium for identification. The plant samples were shade dried at room temperature for 5 to 10 days or until the parts were completely dried. The dried samples were grounded into a fine powder using an electric grinder.

2.2. Determination of inorganic nutrients and heavy metals in edible plants

The powder samples from each plant were used for the elemental assay using a standard procedure based on AOAC methods (Williams, 1984). Eight inorganic elements were chosen because of their various roles in the human body's physiological and biochemical functions. These elements were Mg, Ca, K, Fe, Pb, Zn, Hg, and Cd. Quantification tests for the elements were done in triplicate. About 2 g of powder sample was weighed into a clean boiling tube.

Distilled water (5.0ml) and concentrated nitric acid (25ml) were added and mixed by shaking.
gently. The mixture was refluxed over a water bath at 90°C for 4 hours, cooled and 10ml of 70% perchloric acid added. The tubes were refluxed over a water bath at the same temperature for one hour and later cooled to room temperature. Concentrated hydrochloric acid (2ml) was then added to the sample, made to 100ml with distilled water and filtered. All glassware used in the analysis was washed, soaked in aqua regia for two hours, then rinsed with deionised water and dried in the oven. All reagents used in this study were of analytical grade: hydrochloric acid ‘AnalaR’ (sp. gr. 1.18, BDH), nitric acid ‘AnalaR’ (sp. gr. 1.42, BDH), perchloric acid ‘AnalaR’ (sp. gr. 1.70 BDH), stock solutions 1000ppm (Sigma-Aldrich) of Mg, Ca, K, Fe, Pb, Zn, Hg and Cd were serially diluted to make standard solutions in the concentrations of 0.125, 0.25, 0.50, 1.00 ppm for calibration. To both standard and sample solutions, 1% (w/v) lanthanum solution was added to overcome potential interferences. The samples were then analyzed using a graphite furnace flame Atomic Absorption Spectrophotometer (Shimatzu model AA-63000, Japan). The mineral concentrations were expressed as mg/100g dry weight (dw) and compared with the Recommended Daily Allowances (Allowances, 1989; WHO, 2004a; EFSA, 2016).

2.3. Statistical analysis

The data were analyzed using the statistical package for social sciences, SPSS version 26.0, and presented as mean ± standard deviation. Differences in inorganic nutrient and heavy metal contents among plant species were evaluated using analysis of variance (ANOVA) followed by Turkey Post-Hoc test as the multiple comparison procedure.

2.4. Human health risk assessment

The heavy metals health risk assessment was done using the standard method (Rahmdel et al., 2018). The estimated daily intake (EDI) and target hazard quotient (THQ) were calculated to
determine the potential effects of the heavy metal contamination on the health of both children and adults.

2.4.1. Estimated Daily Intake

The estimated average daily intake, EDI (mg/Kg body weight/day) represented an estimate of the daily exposure dose of pollutant/heavy metals to which consumers might be exposed through their diets. The EDI was calculated using the formula $= C \times CR \times IR / BW$ (García-Rico and Tejeda-Valenzuela 2020; Xiong et al., 2020), Where C is the concentration of heavy metal, CR is the conversion factor (To convert the concentration of sample from dry weight to fresh weight values, a conversion factor of 0.2 was used based on the moisture content of fresh leaf (80%); IR is the average daily consumption which was considered as 0.3 kg/person/day (Thang et al., 2021), 0.17 kg per person per day (Liu et al., 2017) and 0.1 per person/day (Njuguna et al., 2019). BW is the average body weight of consumers, which was estimated 27 kg for children aged 6-9yrs (Nsibambi, 2013) and 70.3kg for adults (Kirunda, 2017, Echodu et al., 2019).

2.4.2. Target Hazard Quotient

The target hazard quotient (THQ) of each pollutant/heavy metal is an estimate of the non-carcinogenic health risk level (García-Rico and Tejeda-Valenzuela; 2020; Xiong et al. 2020) due to the consumption of wild edible plants. THQ refers to the mean daily dose of metal with reference to its reference dose. According to US EPA, (2011) and Zhang et al. (2018), THQ and HI values >1 indicate a potential adverse cancer effect, while values < 1 denote non-adverse cancer risk in consumers. To estimate the human health risk from consuming heavy metals/pollutants in food, the THQ was calculated using the following formula:
THQ = $\frac{EDI}{RfD}$

RfD is the daily intake reference dose (an estimate of the daily dosage to which the consumers may be continuously exposed over a lifetime without experiencing any harmful effects). RfD for Pb = 0.0035 mg/kg/day.

3. Results and Discussion

Our findings on metal elements content of selected wild edible plant species (Table 1), show that Mg content varied between 10.42±0.15 in *A. gangetica* to 9.48±0.19 mg/100g (dw) in *H. cannabinus*. These values are higher than the Mg values for *H. cannabinus* reported by Amaglo and Nyarko (2012), which was 508.28 mg/kg. Magnesium concentration in the fresh weight of the wild edible plants was approximately uniform at 0.02 mg/g, according to our study. The daily intake of Mg in all the wild edible plants in this study for both adults and children was 2 mg (Table 2). This value is lower than the Reference Daily Allowance (RDA) for both children and adults. The assumption is that both adults and children eat at least 100 g of fresh vegetables daily. However, these edible plants are not the sole diet of the locals. Thus, other food items consumed contribute towards the realization of the RDA. The RDA values for Mg are (300-600 mg) for infants below 6 years, and (280 – 350 mg) adults.

Magnesium is a cofactor in more than 300 enzyme systems that regulate diverse biochemical reactions in the body, including protein synthesis, muscle and nerve transmission, neuromuscular conduction, signal transduction, blood glucose control, and blood pressure regulation (Faryadi, 2012; Gröber et al., 2015). Magnesium also acts as a cofactor during RNA and DNA synthesis (Glasdam et al., 2016).
Calcium content varied between 1265.30±14.94 in *S. obtusifolia* to 118.51±5.82 in *I. eriocarpa*. Calcium content in fresh weight of vegetables ranges from 2.53mg/g in *S. obtusifolia* to 0.24 in *I. eriocarpa* and *C. ochroleuca* (Table 2). Sudi et al. (2011) reported Ca content of 2.64ppm, which is lower than the value in our findings. Again, this consumption does not meet children's and adults' daily requirements. The RDA values for Ca are 600–800mg for infants below 6 years, and 800-1200 for adults. Calcium content in fresh weight (mg/100g fw) of other conventional vegetables for instance cabbages vary from 32.1 ± 0.8 to 44.0 ± 1.4 (Masamba & Nguyen, 2008). Calcium salts provide rigidity to the skeleton and calcium ions play a role in many metabolic processes. It is essential for maintaining bones and teeth strong over a lifetime. It also ensures the proper functioning of muscles and nerves and helps blood clot processes (Pravina et al., 2013). Calcium is involved in vascular contraction, vasodilation, muscle functions, nerve transmission, intracellular signaling, and hormonal secretion (Beto, 2015).

The potassium content varied between 3346.84±486.86mg/100g (dw) in *C. sacrobasis* to 288.37±1.04mg (dw) in *H. surattensis*. Potassium content in fresh weight of vegetables ranges from 6.69 to 0.58mg/100g. The daily intake of K through eating 100gm of fresh wild edible plants for adults and children in this study ranged from 58 to 669 mg. This again does not supply the RDA. The RDA values for K are 1600mg for infants below 6 years and 3500mg for adults (Table 2). Potassium plays an essential role in cell metabolism, participating in energy transduction, hormone secretion, and the regulation of protein and glycogen synthesis (Turck et al., 2016). It also reduces the risk of blood pressure, stroke, and cardiovascular disease (Aaron and Sanders, 2013).
The iron content varied between 11.21±0.08 in *Hibiscus sp.*, and *A. gangetica* to 3.29±0.02 in *S. obtusifolia*. Fe content in fresh weight of the 12 vegetables ranges from 0.02 - 0.01mg/g. The daily intake of Fe through eating 100gm of fresh wild edible plants for adults and children ranged from 1 - 2mg which is below the RDA. The RDA value for Fe was 10mg for infants below three years and adults (Table 3). Iron is an essential mineral for oxygen transport and energy production and is a functional component of hemoglobin and myoglobin. Iron is a crucial part of cytochromes in the electron transport system during the biochemical process of energy production (Alaunyte, 2014).

The zinc content varied between 2.36±0.03mg/100g (dw) in *C. sacrobasis* to 0.52±0.02mg/100g (dw) in *M. angolensis* (Table 3). Zinc concentration in fresh weight of vegetables ranges was highest in *C. sacrobasis* 0.005mg. The daily intake of Zn in the wild edible plants for adults and children was 0.5mg. The RDA values for Zn are 10mg for infants below three years and adults, respectively. Zinc is an essential component of many enzymes participating in the synthesis and degradation of carbohydrates, lipids, proteins, and nucleic acids, as well as in the metabolism of other micronutrients (Mills, 2013).

The Pb concentration in the twelve vegetables varied from 1.77±0.13 mg/g in *C. ochroleuca* to 0.87±0.02 mg/g in *V. membranacea* (Table 4). These values are higher than 0.005 - 0.1ppm reported in a study on vegetables in Jamaica (Antoine, 2017) and the CODEX and EU limits of 0.1mg/kg (CODEX STAN 193-1995; EU-2006). However, the THQ values were less than 1, implying that consumption of wild vegetables does not pose a long-term deleterious effect in children and adults.

4. Conclusions and Recommendations
Wild edible plants consumed in the Acholi sub-region are rich in inorganic nutrients. However, the amount consumed by the community does not meet the RDA. None of the plants contained detectable levels of Hg or Cd. All the plants contained Pb which was higher than the CODEX and EU limits (0.1ppm). However, the THQ of Pb in all those plants falls below the limit to cause long-term adverse effects. Therefore, consuming these edible plants does not pose a health risk of public concern to the consumer. There is need to promote use of such edible plant through local community sensitization since their consumption can contribute to attaining the RDA which is important for healthy living. Further studies are needed to quantify other inorganic components such as Se, Mn, As, and estimate their bioavailability.
Table 1: Mean concentration of macro- and micro-nutrients in mg/100g (dw) ± standard deviation

<table>
<thead>
<tr>
<th>Plant samples</th>
<th>Mg</th>
<th>Ca</th>
<th>Fe</th>
<th>K</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acalypha rhomboidea</td>
<td>10.23±0.14<sup>cd</sup></td>
<td>1170.14±17.0<sup>g</sup></td>
<td>8.21±0.04<sup>b</sup></td>
<td>2268.2±15.18<sup>f</sup></td>
<td>0.99±0.11<sup>ab</sup></td>
<td>1.38±0.01<sup>f</sup></td>
</tr>
<tr>
<td>Asystasia gangetica</td>
<td>10.42±0.15<sup>d</sup></td>
<td>532.39±25.76<sup>e</sup></td>
<td>11.20±0.09<sup>i</sup></td>
<td>2180.15±19.20<sup>f</sup></td>
<td>1.22±0.07<sup>b</sup></td>
<td>1.82±0.01<sup>b</sup></td>
</tr>
<tr>
<td>Crassocephalum sacrobasis</td>
<td>9.83±0.07<sup>ab</sup></td>
<td>150.12±1.82<sup>a</sup></td>
<td>9.17±0.03<sup>i</sup></td>
<td>3346.84±486.86<sup>g</sup></td>
<td>0.98±0.04<sup>ab</sup></td>
<td>2.362±0.03<sup>i</sup></td>
</tr>
<tr>
<td>Crotalaria ochroleuca</td>
<td>10.05±0.07<sup>bc</sup></td>
<td>122.18±10.69<sup>a</sup></td>
<td>5.06±0.03<sup>e</sup></td>
<td>839.48±39.70<sup>bc</sup></td>
<td>1.77±0.13<sup>c</sup></td>
<td>1.45±0.01<sup>g</sup></td>
</tr>
<tr>
<td>Heterotis rotundifolia</td>
<td>9.68±0.06<sup>a</sup></td>
<td>223.46±9.19<sup>b</sup></td>
<td>6.13±0.02<sup>f</sup></td>
<td>782.74±4.90<sup>bc</sup></td>
<td>0.94±0.03<sup>ab</sup></td>
<td>0.95±0.01<sup>d</sup></td>
</tr>
<tr>
<td>Hibiscus cannabinus</td>
<td>9.48±0.19<sup>a</sup></td>
<td>458.13±20.47<sup>d</sup></td>
<td>4.31±0.10<sup>c</sup></td>
<td>518.65±2.92<sup>ab</sup></td>
<td>1.12±0.25<sup>b</sup></td>
<td>0.98±0.01<sup>d</sup></td>
</tr>
<tr>
<td>Hibiscus sp.</td>
<td>9.66±0.11<sup>a</sup></td>
<td>576.4±23.85<sup>e</sup></td>
<td>11.21±0.08<sup>j</sup></td>
<td>532.28±9.77<sup>ab</sup></td>
<td>0.87±0.22<sup>ab</sup></td>
<td>0.73±0.01<sup>c</sup></td>
</tr>
<tr>
<td>Hibiscus surattensis</td>
<td>10.23±0.07<sup>cd</sup></td>
<td>835.88±10.22<sup>f</sup></td>
<td>6.69±0.03<sup>g</sup></td>
<td>288.37±1.0<sup>a</sup></td>
<td>0.69±0.11<sup>a</sup></td>
<td>0.55±0.01<sup>d</sup></td>
</tr>
<tr>
<td>Ipomoea eriocarpa</td>
<td>9.81±0.13<sup>ab</sup></td>
<td>118.51±5.82<sup>a</sup></td>
<td>4.75±0.04<sup>d</sup></td>
<td>1494.4±14.92<sup>de</sup></td>
<td>1.19±0.20<sup>b</sup></td>
<td>0.62±0.02<sup>b</sup></td>
</tr>
<tr>
<td>Maerua angolensis</td>
<td>10.11±0.20<sup>b</sup></td>
<td>523.73±46.63<sup>e</sup></td>
<td>3.82±0.04<sup>b</sup></td>
<td>1554.6±13.65<sup>e</sup></td>
<td>0.98±0.05<sup>ab</sup></td>
<td>0.52±0.02<sup>a</sup></td>
</tr>
<tr>
<td>Senna obtusifolia</td>
<td>9.77±0.02<sup>ab</sup></td>
<td>1265.3±14.94<sup>h</sup></td>
<td>3.29±0.02<sup>a</sup></td>
<td>1112.13±4.49<sup>ed</sup></td>
<td>0.87±0.06<sup>ab</sup></td>
<td>1.34±0.01<sup>f</sup></td>
</tr>
<tr>
<td>Vigna membranacea</td>
<td>10.28±0.07<sup>cd</sup></td>
<td>351.6±11.31<sup>c</sup></td>
<td>4.42±0.09<sup>c</sup></td>
<td>914.63±19.13<sup>bc</sup></td>
<td>0.87±0.02<sup>ab</sup></td>
<td>1.26±0.01<sup>c</sup></td>
</tr>
</tbody>
</table>
All tabulated mean ±standard deviation (s.d) values were derived from triplicate sample tests. Turkeys test at 95% confidence level and statistical significance level was taken at p < 0.05. The superscript letters a, b, c, d, e, f, g, h, i shown in the table denote significant differences (p < 0.05). Mercury and cadmium were below detectable limits and omitted from the table. A one-way ANOVA revealed that there was a statistically significant difference in mean inorganic components among the twelve wild edible plants: Mg [F_{(11, 23)} = 17.73, p = 0.00]; Ca [F_{(11, 23)} = 1088.94, p=0.00], Fe [F_{(11,23)} = 7064.15, p=0.00], K [F_{(11,23)} = 115.42, p=0.00], Pb [F_{(11,23)} = 12.48, p=0.00], and Zn [F_{(11,23)} = 4400.87, p=0.00].
Table 2. Macro-nutrients concentration of mineral nutrients mg/g for dry weight and fresh weight (dw and fw), daily intake (DI) and percentage recommended daily allowance (%RDA) for Mg, Ca and K

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mg</th>
<th>Ca</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dw</td>
<td>fw</td>
<td>DI %RDA</td>
</tr>
<tr>
<td>Acalypha rhomboidea</td>
<td>0.10</td>
<td>0.02</td>
<td>2.05 0.73</td>
</tr>
<tr>
<td>Asystasiagangetica</td>
<td>0.104</td>
<td>0.02</td>
<td>2.08 0.74</td>
</tr>
<tr>
<td>Crassocecephalum sacrobasis</td>
<td>0.098</td>
<td>0.02</td>
<td>1.97 0.70</td>
</tr>
<tr>
<td>Crotalaria ochroleuca</td>
<td>0.101</td>
<td>0.02</td>
<td>2.01 0.72</td>
</tr>
<tr>
<td>Heterotis rotundifolia</td>
<td>0.097</td>
<td>0.02</td>
<td>1.94 0.69</td>
</tr>
<tr>
<td>Hibiscus cannabinus</td>
<td>0.095</td>
<td>0.02</td>
<td>1.90 0.68</td>
</tr>
<tr>
<td>Hibiscus sp.</td>
<td>0.097</td>
<td>0.02</td>
<td>1.93 0.69</td>
</tr>
<tr>
<td>Hibiscus surattensis</td>
<td>0.102</td>
<td>0.02</td>
<td>2.05 0.73</td>
</tr>
<tr>
<td>Ipomoea eriocarpa</td>
<td>0.098</td>
<td>0.02</td>
<td>1.96 0.70</td>
</tr>
<tr>
<td>Maerua angolensis</td>
<td>0.101</td>
<td>0.02</td>
<td>2.02 0.72</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>Ca</td>
<td>K</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Senna obtusifolia</td>
<td>0.098</td>
<td>0.02</td>
<td>1.95</td>
</tr>
<tr>
<td>Vigna membranacea</td>
<td>0.103</td>
<td>0.02</td>
<td>2.06</td>
</tr>
</tbody>
</table>

RDA (mg/day)

<table>
<thead>
<tr>
<th></th>
<th>Mg</th>
<th>Ca</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants 3-6</td>
<td>300-600</td>
<td>600-800</td>
<td>1600</td>
</tr>
<tr>
<td>Pregnancy/Lactating mothers</td>
<td>280</td>
<td>1200</td>
<td>3500</td>
</tr>
<tr>
<td>Post-menopause/men</td>
<td>350</td>
<td>800</td>
<td>3500</td>
</tr>
<tr>
<td>Sample</td>
<td>Fe dw</td>
<td>Fe fw</td>
<td>DI</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Acalypha rhomboidea</td>
<td>0.08</td>
<td>0.02</td>
<td>1.64</td>
</tr>
<tr>
<td>Asystasia gangetica</td>
<td>0.11</td>
<td>0.02</td>
<td>2.24</td>
</tr>
<tr>
<td>Crassocephalum sacrobasis</td>
<td>0.09</td>
<td>0.02</td>
<td>1.83</td>
</tr>
<tr>
<td>Crotalaria ochroleuca</td>
<td>0.05</td>
<td>0.01</td>
<td>1.01</td>
</tr>
<tr>
<td>Heterotis rotundifolia</td>
<td>0.06</td>
<td>0.01</td>
<td>1.23</td>
</tr>
<tr>
<td>Hibiscus cannabinus</td>
<td>0.04</td>
<td>0.01</td>
<td>0.86</td>
</tr>
<tr>
<td>Hibiscus sp.</td>
<td>0.11</td>
<td>0.02</td>
<td>2.24</td>
</tr>
<tr>
<td>Hibiscus surattensis</td>
<td>0.07</td>
<td>0.01</td>
<td>1.34</td>
</tr>
<tr>
<td>Ipomoea eriocarpa</td>
<td>0.05</td>
<td>0.01</td>
<td>0.95</td>
</tr>
<tr>
<td>Maerua angolensis</td>
<td>0.04</td>
<td>0.01</td>
<td>0.76</td>
</tr>
<tr>
<td>Plant</td>
<td>Fe (mg/day)</td>
<td>Zn (mg/day)</td>
<td>Fe (mg/day)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Senna obtusifolia</td>
<td>0.03</td>
<td>0.66</td>
<td>6.59</td>
</tr>
<tr>
<td>Vigna membranacea</td>
<td>0.04</td>
<td>0.89</td>
<td>8.87</td>
</tr>
</tbody>
</table>

RDA (mg/day)

<table>
<thead>
<tr>
<th>Category</th>
<th>Fe (mg/day)</th>
<th>Zn (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants 3-6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Pregnancy/Lactating mothers</td>
<td>15</td>
<td>15-22</td>
</tr>
<tr>
<td>Post-menopause/men</td>
<td>10</td>
<td>12-15</td>
</tr>
</tbody>
</table>
Table 4. Target Hazard Quotient (THQ) values for Lead in the wild edible vegetables

<table>
<thead>
<tr>
<th>Sample</th>
<th>mg/g(dw)</th>
<th>mg/g(fw)</th>
<th>DI</th>
<th>EDI</th>
<th>Children THQ</th>
<th>Adult THQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acalypha rhomboidea</td>
<td>0.01</td>
<td>0.002</td>
<td>0.197</td>
<td>0.0004</td>
<td>2.59E-05</td>
<td>0.0065</td>
</tr>
<tr>
<td>Asystasia gangetica</td>
<td>0.01</td>
<td>0.002</td>
<td>0.244</td>
<td>0.0006</td>
<td>3.98E-05</td>
<td>0.010</td>
</tr>
<tr>
<td>Crassoccephalum sacrobasis</td>
<td>0.02</td>
<td>0.004</td>
<td>0.354</td>
<td>0.0133</td>
<td>8.34E-05</td>
<td>0.0202</td>
</tr>
<tr>
<td>Crotalaria ochroleuca</td>
<td>0.01</td>
<td>0.002</td>
<td>0.188</td>
<td>0.0004</td>
<td>2.36E-05</td>
<td>0.0059</td>
</tr>
<tr>
<td>Heterotis rotundifolia</td>
<td>0.01</td>
<td>0.002</td>
<td>0.223</td>
<td>0.0005</td>
<td>3.32E-05</td>
<td>0.0083</td>
</tr>
<tr>
<td>Hibiscus cannabinus</td>
<td>0.01</td>
<td>0.002</td>
<td>0.174</td>
<td>0.0003</td>
<td>2.02E-05</td>
<td>0.005</td>
</tr>
<tr>
<td>Hibiscus sp.</td>
<td>0.01</td>
<td>0.002</td>
<td>0.174</td>
<td>0.0003</td>
<td>2.02E-05</td>
<td>0.005</td>
</tr>
<tr>
<td>Hibiscus surattensis</td>
<td>0.01</td>
<td>0.002</td>
<td>0.195</td>
<td>0.0004</td>
<td>2.54E-05</td>
<td>0.0063</td>
</tr>
<tr>
<td>Ipomoea eriocarpa</td>
<td>0.01</td>
<td>0.002</td>
<td>0.237</td>
<td>0.0006</td>
<td>3.75E-05</td>
<td>0.0094</td>
</tr>
<tr>
<td>Maerua angolensis</td>
<td>0.01</td>
<td>0.002</td>
<td>0.174</td>
<td>0.0003</td>
<td>2.02E-05</td>
<td>0.005</td>
</tr>
<tr>
<td>Senna obtusifolia</td>
<td>0.01</td>
<td>0.002</td>
<td>0.174</td>
<td>0.0003</td>
<td>1.93E-05</td>
<td>0.0048</td>
</tr>
<tr>
<td>Vigna membranacea</td>
<td>0.01</td>
<td>0.002</td>
<td>0.17</td>
<td>0.0003</td>
<td>1.93E-05</td>
<td>0.0048</td>
</tr>
</tbody>
</table>

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4207724
Acknowledgements

The authors would like to sincerely thank Mr. Rwamburindore Protase of the Makerere University Herbarium for the identification of plant specimens. All the local council personnel and the field assistants are appreciated for assistance during plant samples collection.

Funding

This study was funded by the African Development Bank.

Availability of data and materials

All the data generated during this study are available upon request from the first author.

Author information

Affiliations

Department of Chemistry, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda.

Alfred Nyero

Department of Biology, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda.

Geoffrey Maxwell Malinga

Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.

Godwin Anywar
Authors’ contributions
AN and GMM designed this study; AN collected, analysed samples and wrote the initial draft of the manuscript. GMM and GA were responsible for data interpretation and editing of the manuscript. All authors read and approved the final manuscript.

Consent for publication
Not applicable

Conflict of interest
The authors declare that they do not have any conflict of interests.

Availability of data and materials
No datasets have been deposited in public repositories.

Abbreviations
AAS, Atomic Absorption Spectrophotometer;
SPSS, statistical package for social sciences;
USEPA, United State Environmental Protection Agency;
WHO, World Health Organisation
AOAC, Association Official Analytical Chemist

References
1. PREAMBLE

1.1 SCOPE.

Additives, F. Codex general standard for contaminants and toxins in food and feed

(CODEX STAN 193-1995)

Emmanuel, T. V., Njoka, J. T., Catherine, L. W., & Lyaruu, H. V. M. (2011). Nutritive and
anti-nutritive qualities of mostly preferred edible woody plants in selected drylands of
Iringa District, Tanzania. Pakistan Journal of Nutrition, 10(8), 786–791.
https://doi.org/10.3923/pjn.2011.786.791

setting maximum levels for certain contaminants in foodstuffs. Official Journal
of the European Union, 49(L 364), 5-24.

Faryadi, Q. (2012). The magnificent effect of magnesium to human health: a critical

gigas cultured in the Gulf of California and risk assessment to human

Micronutrient deficiencies in pregnancy worldwide: health effects and

cadmium toxicity. International journal of environmental research and public
health, 17(11), 3782.

human body: a systematic literature review. Advances in clinical chemistry, 73, 169-
193.

Grivetti, L. E., & Ogle, B. M. (2000). Value of traditional foods in meeting macro- and
micronutrient needs: the wild plant connection. 31–46.

therapy. Nutrients, 7(9), 8199-8226.

Hannah Ritchie and Max Roser (2017). Micronutrient Deficiency, Published online at

Matović, V., Buha, A., Đukić-Ćosić, D., & Bulat, Z. (2015). Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food and Chemical Toxicology, 78, 130-140.

Tribaldos, T., Jacobi, J., & Rist, S. (2018). Linking sustainable diets to the concept of food
system sustainability.

http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252

World Health Organization.

Xiong, B., Xu, T., Li, R., Johnson, D., Ren, D., Liu, H., ... & Huang, Y. (2020). Heavy metal accumulation and health risk assessment of crayfish collected from cultivated and uncultivated ponds in the Middle Reach of Yangtze River. Science of the Total Environment, 739, 139963.
