An Axiom Based Metamodel for Software
Process Formalisation: An Ontology Approach

Edward Kabaale?®) | Lian Wen'2, Zhe Wang'2, and Terry Rout!

! Institute for Integrated and Intelligent Systems, Griffith University,
170 Kessels Road, Brisbane, QLD 4111, Australia
{1.wen,z.wang,t.rout}0griffith.edu.au
2 School of Information and Communication Technology, Griffith University,
170 Kessels Rd, Brisbane, QLD 4111, Australia
edward.kabaale@griffithuni.edu.au

Abstract. Software development usually follows well known process
models and standards for development processes. However, these are usu-
ally diverse and described in natural language which complicates their
automation, adaptivity and verification. The need for process formalisa-
tion has long been highlighted, and we have provided a formalisation and
translation algorithm to that effect in earlier work. However, to system-
atically and faithfully formalise heterogeneous processes from different
standards and process models, there is a need to utilise uniform concepts
to underpin the formalisation process. Metamodels and ontologies have
been explored recently to lay a foundation for structuring and express-
ing additional rigour to process formalisation. In this study, we develop
an axiom based metamodel utilising powertype patterns as a conceptual
framework to underpin homogeneous process formalisation. The advan-
tage of an axiomatic and powertype based metamodel approach lies in
its potential to determine the metamodel basic constituents and formal-
ism as well as its extensibility and adaptability. We formalise the meta-
model using ontologies while adopting use cases from ISO/IEC 29110 and
ISO/IEC 24744 standards for metamodel illustrations. Ontology based
process descriptions enable process automated verification and adaptiv-
ity capability through the use of ontology reasoning support engines.

Keywords: Software process + Metamodel - Powertype : Axiom -
Ontology

1 Introduction

Software Engineering (SE) focuses on sound processes and methods for qual-
ity software development within budget and time frame. Over the recent
decades, the process dimension of SE has received increased attention from both
researchers and practitioners [1]. One of the main objectives of this dimension is
to enhance the software product quality through formal definition and improve-
ment of the process by which software is developed and maintained. Conse-
quently, it boosts a wide spectrum of approaches to process definition such as

© Springer International Publishing AG 2017
A. Mas et al. (Eds.): SPICE 2017, CCIS 770, pp. 226-240, 2017.
DOI: 10.1007/978-3-319-67383-7_17

An Axiom Based Metamodel for Software Process Formalisation 227

ISO/IEC 12207 [2], ISO/IEC 29110 [3], process assessment and improvement
such as ISO/IEC 33061 [4] and CMMI [5], and process metamodels such as
OOSPICE [6], SPEM [7] and SEMDM [8] that specify the conceptual foun-
dations for process modeling. However, these are mainly described in natural
language and published in manuals and booklets [9-11], this presents several
challenges such as difficulty in finding or updating information in different ver-
sions of the same document, lack of automated auditing and verification that
limits adherence and monitoring (e.g. constraint checking of required relations
among activities, work products and roles). Even though these process model-
ing techniques enhance software development activities, they still need formal
enhancement to enable process automation and verification [10-13].

A formal software process specification is a specification expressed in a lan-
guage whose vocabulary, syntax and semantics are formally defined and well
understood. Its a precise and concise specification that supports formal software
process definition and management, automated analysis, verification and vali-
dation, understanding, evolution management, classification, improvement and
aiding in choosing the appropriate process for a given project [11]. Formal meth-
ods such as Petri nets, algebra, ontologies, bayesian networks and composition
trees have been used in modeling and formalising software process before. For
example composition trees have been used to formally model and compare soft-
ware processes in [14,15]. Ontology based approaches [10,16-18] have also been
proposed to model,validate, constrain and query software process descriptions.
Ontologies are being deployed in industry to formalise information models and
standards that would otherwise be costly to develop, integrate and share, and
monitor through automated queries and verification [16]. Even though, some
practitioners especially in small entities use informal process descriptions in
industry [19], there is a great need and usage of formal process descriptions
in practice as well [11]. However, due to the great diversity and complexity
of software processes from different standards and process models coupled with
varying situational contexts [20], software process formalisation still lacks a stan-
dardized, consistent and faithful way making it error prone, time consuming and
thus expensive [21].

Metamodels have been proposed as a way of increasing process modeling
rigour and formality for automation [9]. These metamodels lay a foundation
in terms of concepts, rules and conceptual relationships among concepts used
in process modeling [22]. So processes grounded in metamodels offer a higher
degree of formalisation and better support for consistent extensions and modifi-
cation [9]. Moreover, they impose well formedness rules on process models and
process instances instantiated from them. These help in maintaining process con-
sistency and completeness [23]. However, the current process metamodels such
as SPEM and SEMDM are too generic and complex to guide software process
formalisation [22]. For example, SEMDM was intended to be general method-
ology metamodel and cover not only process modeling but also other areas like
computer supported collaborative work (CSCW)[9]. Indeed such genericity and
complexity hinders their comprehension that would be of great help to software

228 E. Kabaale et al.

process formalisation. Therefore, there is a need for a customised and simple
metamodel tailored for homogeneous software process formalisation. To develop
this metamodel, we utilise the powertype pattern as introduced in process meta-
modeling by [24]. The powertype pattern enables tailoring of software process
formalisation to specific project requirements and contexts.

Even though, metamodels provide a rigous underpinning and consistent ter-
minology to various aspects of SE, they only deal with conceptual definitions,
standardisations and syntax of process models necessitating the need for formal
semantics and reasoning of such conceptual definitions [25,26]. We therefore for-
malise the proposed metamodel using OWL ontologies. Ontologies consititute
formal models that define formal semantics and inference services for a shared
conceptualisation. These can be used to draw interesting logical conclusions
through for example (meta)model checking, model enrichment, dynamic clas-
sification, information retrieval and querying of software process models across
the metamodel hierarchy thus improving software engineering processes [27].

In this study, we propose an axiom-based metamodel to underpin a homo-
geneous software processes formalisation. We design this metamodel through
rising the abstraction levels of common process elements which define the struc-
ture of the process models. The metamodel is grounded in an ontology, reusable,
and adaptable. In Sect. 2, we discuss background information on software process
meta (modeling) and process instantiation, powertypes and ontologies. In Sect. 3,
we abstract the axiom metamodel design from existing process constructs, and
illustrate a general overview of the metamodel with processes from ISO/IEC
29110. In Sect. 4, we discuss the formalisation of the metamodel through OWL
DL that equips it with formal semantics and reasoning capabilities. Finally, we
conclude the paper and identify some future research directions.

2 Background

2.1 Process Metamodeling

Process metamodels are a feasible approach to reduce process modeling complex-
ities through rising the abstraction levels, reuse, and formalisation [22]. Accord-
ing to [28] process metamodels describe a conceptual framework for express-
ing and composing software process models. They describe the relevant software
process sub-models, basic concepts, rules and relationships among concepts with
notations for expressing process models. They allow capturing informal, behav-
iour, functional, and strategic views of software processes [22]. Such information
can then be used to reason on software process modeling for changes, formal-
isation, improvements and updates [29]. Software process models are the key
result of the process modeling activity and instances of process metamodels.
They serve as abstract representations of software processes. These prescribe a
software process in terms of the activities to be carried out, the roles and work
product types involved. Software processes are then instantiated in a specific
project endeavour to develop the desired software product, which in itself is seen
as an instantiation of the software process.

An Axiom Based Metamodel for Software Process Formalisation 229

Process metamodeling is an important conceptual tool in underpinning the
definitions of formal software process models. This has largely been popularised
by the OMG standards where the UML is now the de facto standard formal-
ism for software modeling. The modeling layers in UML metamodel are defined
based on strict metamodeling architecture that only allows instanceOf relations
between adjacent layers, i.e., variables defined at level M,, can only be realised at
M,,_1. This is termed as shallow instantiation where attributes and constraints
are defined at the class level and only realised at the instance level [33]. Where
as the OMG standard approach works well for modeling languages defined at
OMG level M> and used at level My, its insufficient for process standardisation
that requires deep instantiation [24]. That is attributes and constraints defined
at metamodel My are realised (enacted) on real world projects at level My span-
ning multiple modeling levels. When attempt to use UML shallow instantiation
for process metamodeling, it results into modeling challenges such as accidental
complexity [24]. To overcome these challenges, Gonzalez-Perez and Henderson-
Sellers [24] introduced the use of powertypes as a way of deep instantiation for
process metamodeling.

Powertype Based Metamodeling Framework. The Powertype pattern is a
flexible and scalable modeling technique that combines instantiation and gener-
alisation semantics in process metamodeling [9]. Mainly introduced as an alter-
native solution to the inconsistencies, ambiguities and accidental complexities
that result from the use of strict metamodeling technique in process standard-
ization [24]. The powertype pattern has been extensively applied in process mod-
eling [24] and underpins the development of an international standard for meta-
modeling, i.e., ISO/TEC 24744 Software Engineering - Metamodel for Develop-
ment Methodologies (SEMDM)[8], therefore, in this study we utilise it to under-
pin modeling and tailoring of software process formalisation to specific software
project contexts through the developed metamodel.

Essentially a powertype is a class whose instances are subclasses of another
class called a partitioned class [24]. In this regard a powertype is more like
a metaconcept with an extra twist that, its instances can also be subclasses
of another class. The powertype and partitioned class are closely related and
together with the relation between them form a powertype pattern. The power-
type class represents groups of instances that are used to classify the partitioned
class according to a partitioning discriminator (powertype attribute value, e.g.,
name). For example, birds can be classified according to birdSpecies such as
eagle and penguin. The powertype pattern enables the combination of generali-
sation and instantiation across metamodeling layers through dual representation
of concepts (also known as clabject) [33] where the instance of the powertype and
a subtype of a partitioned class are the same thing. From our example eagle as
an instance of bird species is the same thing as Fagle, the subtype of bird. How-
ever, metamodels only deal with the syntactical structures but not the formal
semantics of process models and therefore, the need to ground the metamodel
in an ontology.

230 E. Kabaale et al.

2.2 Ontologies

New technologies such as semantic web that provide reasoning support services
like consistency checking, information retrieval and querying of software process
models are beneficial to improving software engineering processes [34]. OWL! is
a Semantic Web language designed and standardised by W3C to represent rich
and complex knowledge about things, groups of things, and relations between
things [35]. Tts a knowledge representation language underpinned by Description
Logic (DL) that enables expressed knowledge to be reasoned on by human and
artificial agents for consistency and inferring implicit knowledge from the explicit
one. While there are different OWL flavours such as OWL Full, OWL Lite and
OWL DL. Here we are interested in utilising a newer version of OWL DL, i.e.,
OWL DL 2 [35].

OWL representations commonly referred to as ontologies, can be published
and stored in the World Wide Web. An OWL DL ontology is mainly composed of
two main components; The Terminological knowledge represented in the TBox
(Class Level) and the Assertional knowledge forming the ABox (Instance Level).
The TBox defines the intensional knowledge by which a concrete world can
be described. This knowledge is represented by axioms in the form of logical
sentences. The ABox on the other hand, represents assertional knowledge that
complies with the intensional knowledge in the TBox.

In order to use the modeling capabilities of OWL and the potential of DL
reasoning in a layered architecture, the OWL based modeling language has to
provide essential features to support metamodeling and reasoning across lay-
ers; To this effect, the current W3C standard Web Ontology Language (OWL)
supports metamodeling mainly in two flavours; OWL Full that implements full
metamodeling like in RDF is suitable for formalising the powertype metamodel-
ing approach but is undecidable even for basic inference problems [36]. OWL 22
supports a decidable fragment of metamodeling based on contextual semantics
[36] through the Punning technique where the same identifier is used to denote
both the ontology class and an individual. It is common place in conceptual and
ontology engineering to classify entities either as classes or instances depending
on their context [36], given the fact that there is no clear cut borderline between
classes and instance classification. In fact some entities are classified as classes
in higher abstraction levels and instances in lower abstraction levels making
the borderline blurred. Therefore, we use OWL 2 punning to model powertypes
and clabjects concepts into OWL 2 ontologies for automated verification using
various off the self ontology reasoning engines such as FACT++ and HERMIT?.

3 Axiom Metamodel Design

Process metamodel approaches should identify the most appropriate concepts
not only to represent process models but also process assessment [22,29].

! https://www.w3.org/OWL/.
2 https://www.w3.org/TR/owl2-overview/.
3 http://owl.cs.manchester.ac.uk/tools/list-of-reasoners,/.

https://www.w3.org/OWL/
https://www.w3.org/TR/owl2-overview/
http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

An Axiom Based Metamodel for Software Process Formalisation 231

The process is the main concept of any software process metamodel [29]. There-
fore, every process has some common basic elements such as activity, work prod-
ucts and roles [29,30]. However, different metamodels and standards use them
differently in terms of their granularity, formality and abstraction. These form
the tangible internal structure of the process and are important in developing a
process model of such processes [17,30-32].

To enhance homogeneous software process formalisation, understandability
and reduce model maintenance efforts and costs, process modeling should be sup-
ported by a very high level of abstraction [17,31]. To this end, we rise the abstrac-
tion levels of these common elements and generalise them to design new abstract
concepts for the metamodel. Key abstract concepts for the metamodel are stated
as axioms. Axioms are statements which are accepted as true [37]. In this regard,
their accuracy doesn’t need to be proven [37] and can be used as a basis for
argument or inference. Axioms have been used widely in providing foundations
for theoretical works [38,39] in SE. In here, we use these axioms to provide a
theoretical foundation for the essential metamodel concepts for process formali-
sation. Moreover, through these axioms new metamodel concepts are accepted as
true and valid [37]. The main metaconcepts for the metamodel are Achievable,
Doable, Tangible and Assessable. The relationship between these axioms is
visualised in Fig. 1. To demonstrate these concepts we use the software imple-
mentation process from ISO/IEC 29110. ISO/TEC 29110: Systems and Software
Life Cycle Profiles and Guidelines for Very Small Entities (VSEs) [3] is an inter-
national standard (IS) for VSEs employing not more than 25 people on small
software projects (less than six people month). It has two main processes, i.e.,
software implementation(SI) and project management (PM). These have been
mainly drawn from other major standards such as ISO/TEC 12207 and ISO/IEC
15289.

Doable Achievable
<< result>>
<< Input>>
<< output>> << proves>>
Tangible [Assessable

Fig. 1. Relationship between metamodel concepts

Achievable Axiom: For every process performed, there is something to be
achieved. The purpose of the process can be achieved through the process objec-
tives and the demonstration of the outcomes. We collectively term these as
Achievable. See Fig.2 for details. The outcomes are examined for work prod-
ucts and the execution of the base practices to achieve the work products.

232 E. Kabaale et al.

These collectively can help to determine the capability of the performed process.
The achievable axiom represents what needs to be achieved when performing a
selected process. The process purpose is a high level objective of performing a
process whose achievement is demonstrated through the outcomes. The ISO/IEC
29110 process objectives are provided by one or more outcomes from ISO/IEC
12207 standard. Therefore the objectives are the specific goals through which
the process purpose is accomplished [30]. Because of this relationship, we col-
lectively term this as achievable, after all process objectives and outcomes are
meant to ensure successfully accomplishment of a process purpose.

We utilise the zKind metaconcepts from the powertype pattern to tailor
the approach to different specific project contexts [9,31] by aggregating process
characteristics that match a given project context. For example, in Fig.2, we
have subtypes of achievable as purpose, objectives and outcomes but we also
have the same subtypes as instances of the achievablekind where we can assert
their characteristics such as capability levels. Through enactment of the purpose
subtype on a specific project we are able to specify the individual purpose for
such a project for example developing a website for project A. Collectively such
instances aggregate the characteristics of the achievablekind instances.

MetamodelLevel
ClassifiedBy Name | AchievableKind | M
__ Name
; CapabilityLeve
'
'
: . g A e (SRR
\
Achievable '
ModelLevel D M
%Achievablelﬁnd

V
I

| I Purpose : AchievableKind

Name = Software Implementation

Purpose Objectives Outcomes X
—_— |~ CapabilityLevel = 1

Softwarelmplementation ProjectPlanning ProjectPlan
A
,,,,,,,,,,,,,,,,
SIPurpose for ProjectA My

Description = Develop a website

InstanceLeve!

Fig. 2. Achievable Axiom showing process purpose, objectives and outcomes

Doable Axiom: In order to fulfil the achievables, there is something to be per-
formed. The basic concepts in performing a process can be generalised into a com-
mon abstract concept named Doable, see Fig. 3, which represents anything that
is performed to fulfill the achievables. This includes processes, activities, tasks
and steps. The difference between these is the level of granularity at which they
are performed. Whereas the process is a more general concept in the process hier-
archy, the task and step on the other hand are more atomic for enactment [30].
The activity hierarchy shows that activities are described at different granularity
levels with varying attributes. For example, the activity hierarchy is represented

An Axiom Based Metamodel for Software Process Formalisation 233

as domain concept in OOSPICE, WorkUnits in SEMDM and activity in [30].
Makinen proposes the use of abstract class activity so that uniform attributes
can be inherited by all other concrete classes within the activity hierarchy, but
then activity itself is also part of the activity hierarchy. Our doable class is a
generalisation of all things performed to fulfil the process purpose including the
process, activity, task and steps. From Fig. 3, we have the main process as soft-
ware implementation with various activities like requirements analysis and these
are supported by tasks such as elicit requirements. The duration of the doable
class will be the aggregation of all these activities sharing the same attributes
whose values are taken at the project level. On the other hand, the doablekind
class provides attributes for the process model level describing the characteristics
of all the kinds of processes, activities and tasks.

MetamodelLevel
ClassifiedBy Name DoableKind M
Name

Doable /?\
ModelLevel StantTime E My
endime i
Duration !
|
'
: DoableKind |
| I Process : DoableKind
Process Activity Task re |mple:
Softwarelmplementation RequirementsAnalysis ElicitRequirements
A
................
SoftwarelmplementationA My
StanTime = 5-May-17
EndTi May-17

M
Duration = 3days

InstanceLevel

Fig. 3. Doable Axiom showing software implementation process example

Tangible Axiom: In order to perform the doable, it requires something as input
to produce the desired output. The main purpose of performing a process is to
produce outputs. Tangible are the inputs and outputs of performing the doable
see Fig.4. The tangible within ISO/IEC 29110 at the abstract level are input,
internal or output products. When they are outputs, they are always associated
with a destination. This destination can either be another process for exam-
ple project plan from project management process to software implementation
process [3] or just going outside of the process, for example acceptance document
goes outside of the implementation process to the customer. The tangible can
also be inputs to the doable for example a project plan is an input to the software
implementation process. Other times the tangible can be internal work products
such as ChangeRequest from within the process [3].

Assessable Axiom: The tangible can be objectively observed and measured
to prove if the achievable are fulfilled. The assessment of the quality of exe-
cution and outputs produced is normally done through process assessment.

234 E. Kabaale et al.

MetamodelLevel

ClassifiedBy Name TangibleKind

Itle '
ModelLevel Nertion . My
: TangibleKind
OutputProduct InternalProduct InputProduct
RequirementsDocument ValidationResults ProjectPlan
A
................
RequirementsDocument Mo

Title : MyRequirementsDocument
Version = 1.2

InstanceLevel

Fig. 4. Tangible Axiom showing work products

Such assessments are normally carried out using prescribed assessment mod-
els such as ISO/IEC 33061 [4] and CMMI [5]. These models outline the abstract
properties for the process assessment such as process purpose and outcomes [29].
We refer to this collectively as Assessable. Process assessment indicators are
grouped into two categories as process performance and capability assess-
ment. Its the process performance category that assesses the accomplishment
of a process purpose through the process outcomes. Moreover, ISO/IEC 29110
doesn’t state any process capability beyond process performance [40]. We there-
fore limit our assessment to only process performance, i.e., process capability
level one. The main assessment indicators for process performance are the work
products and base practices [4] and have been used to develop a process assess-
ment model (PAM) and method for VSEs operating at process capability level
one [40]. The work products have been already discussed in the tangible axiom,
see Fig.4. The base practise according to [4] is an activity that addresses the
purpose of a particular process. A coherent set of base practices is associated
with each process in the process dimension. And importantly base practices are
described at an abstract level and have been linked to taskkind by [31]. The
taskind classes that represent base practices have also been discussed in the
doable axiom see Fig. 3.

According to [29] a metamodel that directly supports the concept of capa-
bility levels enhances the definitions of process models that are dynamically
tailorable along their capability levels. It should be noted, however, that from
the Doable its only the process that is assessable because its associated with
a purpose and outcomes while others are not [29]. An assessable process meta-
model is one that incorporates the necessary formal properties for assessment
so that no external process reference model is needed [29]. A good metamodel
should address the different aspects of a process model such as the process hier-
archy (Doable), work products (Tangible), objectives (Achievable) as well as the

An Axiom Based Metamodel for Software Process Formalisation 235

assessment (Assessable) of the entire process [29]. Its in this regard that we pro-
vide our axiom based metamodel for process formalisation as discussed above
that addresses the key different aspects of process models.

4 Ontology Based Process Metamodeling

The need to fix formal semantics for metamodels and their instantiated process
models has long been highlighted by different authors [25-27]. Metamodel formal
semantics are needed for satisafiability checking at the process model layers as
well as checking the consistency of the instantiated process models [27]. The cur-
rent approaches [27] emphasise fixing formal semantics for metamodels and the
corresponding process models helping to maintain consistency between meta-
models and their instantiated process models [26]. For example in [27], both the
metamodel and process models are transformed to ontologies where the meta-
model is transformed to the OWL DL TBox and the process model is transformed
to the OWL DL ABox. In [26] domain ontologies are used to define formal seman-
tics for process models while meta-ontologies or foundational ontologies are used
to define formal semantics for metamodels. A reference ontology for the domain
of software engineering standards has been developed by [31] where a common
and unambiguous terminology is sought for all (current and future) software
engineering standards developed by ISO/IEC JTC1’s SC7. Software engineering
standard harmonization ontologies [32] have also been developed to harmonise
concepts and term usage across different process models and references models
in software engineering domain. All these studies lay a theoretical foundation
for the work presented in this paper.

However, the semantics and consistency of the instantiated processes in
respect to the metamodel are largely undefined in the current approaches. In
earlier work [13], we have shown how the semantics of the instantiated process
can be used for process reasoning, verification and conformance to the process
model. This provides our motivation for the current section by extending the
semantic mapping from the metamodel further to the process instances. This can
guarantee the semantic consistency right from the metamodel upto the instan-
tiated process. Hence, we map the metamodel at Ms to a OWL DL TBox, the
clabject (dual entity) at M; to OWL DL TBox/ABox (OWL punning) and the
instantiated process My to OWL DL ABox. See Fig.5 for details. With such
a mapping, we are able to utilise ontology reasoning support across the meta-
modeling layers such as satisfiability checking between metamodels and process
models, process models and process instances as well as process metamodels and
process instances. Moreover, we can enforce and check the well formedness con-
straints that the metamodel imposes on the process models and process instances
respectively.

To illustrate our approach, we take the Tangible metaconcept for an example
from our approach as shown by Fig. 5. At level M, we have the Tangible Kind
class(Powertype) that classifies or partitions the Tangible class (partitioned
class) at M using attribute name as a partitioning discriminator. The Tangible

236 E. Kabaale et al.

Syntactic Domain Semantic Domain
Process metamodeling architecture . Ontology metamodeling architecture
Translation
[Tangiblekind |
My ,- :
i f\'sme -
i MustBeApproved 5 TBox

1 L — i}

e Ty T T e I e T e R b
| Tangible N :

Title
Version

My

: E TBox/ABox

TangibleKind : OutPutProduct | %
(OWL Punning)

‘Nsme = RequirementsDocument
MustBeApproved = yes

A

.................. e e e T

RequirementsDocument .
o ITr.!e: MyRequirementsDocumeant '_'—_> ABox

Version = 1.2

Fig. 5. Ontology based process metamodeling architecture

class at M is subtyped into different kinds such as output, internal and input
products (only output products-requirementsdocument is shown in Fig.5). At
the same time the instances of the T'angible Kind class are exactly the subtypes
of the Tangible class forming a dual concept also known as the clabject in our
case the RequirementsDocument that has both the class facet from the T'angible
class and the object facet from the Tangible Kind. The class facet of the clab-
ject represents the actual output products from enacting the process such as the
RequirementsDocument which can further be instantiated in a specific project
to yield MyRequirementsDocument version 1.2. On the other hand, the instance
facet of the RequirementsDocument is used as a template from which other ver-
sions of requirement documents may be later instantiated.

The metamodel is translated to an OWL DL ontology through a translation
algorithm developed in our earlier work [13] for consistency checking, verification
and query answering. The T'angible Kind and Tangible classes at M, and M;
respectively are translated to OWL DL TBoz. The class facet of the clabject
from the Tangible class is translated to the T'Box while the object facet of the
clabject from the TangibleKind class is translated to the OWL DL ABox at
the same level through OWL 2 Punning technique. OWL 2 Punning is similar
to clabject in process metamodeling because it treats one identifier in this case
RequirementsDocument as an ontology class and an individual based on the
context in which the identifier is used in the ontology. For example, the following
axioms state the fact that RequirementDocument is a Tangiblekind, and that
MyReuirement Document is a RequirementDocument:

ClassAssertion(Requirement Document, My Requirement Document) (1)

An Axiom Based Metamodel for Software Process Formalisation 237

ClassAssertion(Tangiblekind, Requirement Document) (2)

We can note from these axioms that the symbol (clabject) Requirements
Document is used in (1) as a class and in (2) as an individual. This serves
our purpose earlier stated, for example requirements document as a subtype of
Tangible class can be treated as a class where RequirementsDocument can be
further instantiated into My Requirements Document1.2, but on the other hand,
it can also be treated as an instance of the T'angible Kind class and therefore
translated to OWL DL TBox where the characteristics of the requirement doc-
ument kind can be asserted such as their approvals. This approach can provide
practical support and enhance dynamic software process formalisation, tailor-
ing, assessment and process run time modeling and verification. The formal
approach presented in this paper is part of an ongoing work towards software
process formalisation and automation where process monitoring, adaptability,
and verification can be enabled. Furthermore, ontology reasoning engines can be
used to perform automated reasoning and verification on the former model to
ensure process (model) well formedness.

5 Conclusion and Future Works

This paper presents an axiom based metamodel towards systematic and faith-
fully software process formalisation as part of an ongoing work for software
process automation and verification. The main aim of the metamodel is to pro-
vide uniform formal concepts at an abstract level that may be utilised for soft-
ware process formalisation. Powertype pattern has been utilised to develop the
metamodel with the view of enabling process model extensibility and flexibility
with ability to model run time processes and their verification. Powertypes also
enable tailoring of processes to different specific projects through the use of zKind
and clabject concepts. This helps to create different hierarchical views/contexts
for the modeled process, a limitation earlier identified with UML strict metamod-
eling. Finally we formalise the metamodel using OWL DL into formal ontology.
Especially, we formalise the powertype and clabject using the OWL DL 2 pun-
ning technique. This enables various types of verification at different levels to
be carried. For example, we are able to utilise ontology reasoning tool support
across the metamodeling layers such as satisfiability checking between process
models and metamodels, process models and process instances as well as process
metamodels and process instances.

Software development processes are typically too complex to be modeled and
maintained without the help of tools [11]. As this work is ongoing, we are yet
to evaluate it in a practical setting. However, the work presented in this paper
and the algorithm developed in earlier work [13] forms a conceptual foundation
for the development of a software process translation tool that we are currently
developing. This tool will enable us to evaluate our approach in a practical
setting in future work.

238 E. Kabaale et al.
References
1. Fuggetta, A.: Software process: a roadmap. In: ICSE 2000: Proceedings of the

10.

11.

12.

13.

14.

15.

16.

17.

International Conference on Software Engineering (ICSE)(2000)

. ISO/IEC FDIS 12207:2017. Systems and software engineering - Software life cycle

processes (2017)
ISO/TEC TR 29110-5-1-2:2011, Software engineering Lifecycle profiles for VSEs:
Management and engineering guide: Generic profile group: Basic profile (2011)

. ISO, ISO/IEC 33061:2015 Information technology - Process capability assessment

model for software life cycle processes (2015)

CMMI Product Team, CMMI for Development, Version 1.3, Software Engineering
Institute, Carnegie Mellon University (2010)

OOSPICE, Software Process Improvement and Capability Determination for
Object-Oriented/Component-Based Software Development (2002)

Object Management Group: Software and Systems Process Engineering Meta-
Model 2.0, formal/2008-04-01. Object Management Group, USA (2008)
ISO/IEC, 2007. ISO/IEC 24744. Software Engineering Metamodel for Develop-
ment Methodologies. ISO, Geneva (2007)

Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process metamod-
els and the creation of a new generic standard Inform. Softw. Technol. (2005)
Gallina, B., Szatmari, Z.: Ontology-based identification of commonalities and vari-
abilities among safety processes. In: Abrahamsson, P., Corral, L., Oivo, M., Russo,
B. (eds.) PROFES 2015. LNCS, vol. 9459, pp. 182-189. Springer, Cham (2015).
doi:10.1007/978-3-319-26844-6_13

Diebold, P., Scherr, S.: Software process models vs. descriptions: What do practi-
tioners use and need? J. Softw. Maint. Evol. Res. Pract. (2017)

Tarhan, A., Giray, G.: On the use of ontologies in software process assessment: a
systematic literature review. In: EASE (2017)

Kabaale, E., Wen, L., Wang, Z., Rout, T.: Representing software process in descrip-
tion logics: an ontology approach for software process reasoning and verification.
In: Clarke, P.M., O’Connor, R.V., Rout, T., Dorling, A. (eds.) SPICE 2016. CCIS,
vol. 609, pp. 362-376. Springer, Cham (2016). doi:10.1007/978-3-319-38980-6_26
Wen, L., Tuffley, D., Rout, T.: Using composition trees to model and compare
software process. In: O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A. (eds.)
SPICE 2011. CCIS, vol. 155, pp. 1-15. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21233-8_1

Wen, L., Rout, T.: Using composition trees to validate an entry profile of software
engineering lifecycle profiles for very small entities (VSEs). In: Mas, A., Mesquida,
A., Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2012. CCIS, vol. 290, pp.
38-50. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30439-2_4

Kharlamov, E., Grau, B.C., Jiménez-Ruiz, E., Lamparter, S., Mehdi, G.,
Ringsquandl, M., Nenov, Y., Grimm, S., Roshchin, M., Horrocks, I.: Captur-
ing industrial information models with ontologies and constraints. In: Groth, P.,
Simperl, E., Gray, A., Sabou, M., Krétzsch, M., Lecue, F., Flock, F., Gil, Y. (eds.)
ISWC 2016. LNCS, vol. 9982, pp. 325-343. Springer, Cham (2016). doi:10.1007/
978-3-319-46547-0-30

Liao, L., Qu, Y., Leung, H.K.N.: A Software Process Ontology and its Application
(2005)

http://dx.doi.org/10.1007/978-3-319-26844-6_13
http://dx.doi.org/10.1007/978-3-319-38980-6_26
http://dx.doi.org/10.1007/978-3-642-21233-8_1
http://dx.doi.org/10.1007/978-3-642-21233-8_1
http://dx.doi.org/10.1007/978-3-642-30439-2_4
http://dx.doi.org/10.1007/978-3-319-46547-0_30
http://dx.doi.org/10.1007/978-3-319-46547-0_30

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

An Axiom Based Metamodel for Software Process Formalisation 239

Clarke, P.M., Calafat, A.L.M., Ekert, D., Ekstrom, J.J., Gornostaja, T., Jovanovic,
M., Johansen, J., Mas, A., Messnarz, R., Villar, B.N., O’Connor, A., O’Connor,
R.V., Reiner, M., Sauberer, G., Schmitz, K.-D., Yilmaz, M.: Refactoring software
development process terminology through the use of ontology. In: Kreiner, C.,
O’Connor, R.V., Poth, A., Messnarz, R. (eds.) EuroSPI 2016. CCIS, vol. 633, pp.
47-57. Springer, Cham (2016). doi:10.1007/978-3-319-44817-6_4

Kabaale, E., Nabukenya, J.: A systematic approach to requirements engineer-
ing process improvement in small and medium enterprises: an exploratory study.
In: Caivano, D., Oivo, M., Baldassarre, M.T., Visaggio, G. (eds.) PROFES
2011. LNCS, vol. 6759, pp. 262-275. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21843-9_21

Jeners, S., P. Clarke, P., OConnor, R.V., Buglione, L., Lepmets, M.: Harmonizing
software development processes with software development settingsA systematic
approach. Commun. Comput. (2013)

Garca, F., Serrano, M., Cruz-Lemus, J., Ruiz, F., Piattini, M.: Managing software
process measurement: a metamodel-based approach. Inf. Sci. (2007)

Martins, P.V., da Silva, A.R.: PIT-ProcessM: a software process improvement
meta-model. In: QUATIC, 7th International Conference (2010)

Pereira, E., Bastos R., da C. Mra, M., Oliveira T.: Improving the consistency of
SPEM based software processes. In: Proceedings of the 13th ICEIS (2011)
Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based meta- modelling
framework. Softw. Syst. Model. (2006)

Henderson-Sellers, B.: Bridging metamodels and ontologies in software engineering.
J. Syst. Softw. 84 (2011)

Saeki, M., Kaiya, H.: On relationships among models, meta models and ontologies.
In: Proceedings of Workshop on Domain-Specific Modeling (2007)

Staab, S., Walter, T., Groner, G., Parreiras, F.S.: Model driven engineering with
ontology technologies. In: Afimann, U., Bartho, A., Wende, C. (eds.) Reasoning
Web 2010. LNCS, vol. 6325, pp. 62-98. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15543-7_3

Lonchamp, J.: A structured conceptual and terminological framework for software
process engineering. In: The ICSP 2. IEEE Computer (1993)

Gonzalez-Perez, C., McBride, T.M., Henderson-Sellers, B.: A metamodel for assess-
able software development methodologies. Softw. Qual. J. (2005)

Makinen, T., Varkoi, T.: Analyzing a Process Profile for Very Small Software Enter-
prises. In: SPICE (2008)

Gonzalez-Perez, C., Henderson-Sellers, B., McBride, T., Low, G.C., Larrucea, X.:
An Ontology for ISO software engineering standards: 2) Proof of concept and
application. Comput. Stand. Interfaces (2016)

Pardo-Calvache, C.J., Garca-Rubio, F.O., et al.: A reference ontology for harmo-
nizing process-reference models (2014)

Atkinson, C., Kiihne, T.: The essence of multilevel metamodeling. In: Gogolla, M.,
Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19-33. Springer, Heidelberg
(2001). doi:10.1007/3-540-45441-1_3

Jekjantuk, N., Groner, G., Pan, J.Z.: Modeling and reasoning in metamodeling
enabled ontologies. Int. J. Softw. Inf. (2010)

OWL 2 Web Ontology Language Primer, 2nd edn., https://www.w3.org/TR/2012/
REC-owl2-primer-20121211

Motik, B.: On the properties of metamodeling in OWL. J. Logic Comput. 17(4),
617637 (2007)

http://dx.doi.org/10.1007/978-3-319-44817-6_4
http://dx.doi.org/10.1007/978-3-642-21843-9_21
http://dx.doi.org/10.1007/978-3-642-21843-9_21
http://dx.doi.org/10.1007/978-3-642-15543-7_3
http://dx.doi.org/10.1007/978-3-642-15543-7_3
http://dx.doi.org/10.1007/3-540-45441-1_3
https://www.w3.org/TR/2012/REC-owl2-primer-20121211
https://www.w3.org/TR/2012/REC-owl2-primer-20121211

240 E. Kabaale et al.

37. Suh, N.P.: Axiomatic Design: Advances and Applications. Oxford University Press,
New York (2001)

38. Kim, S.J., Suh, N.P., Kim, S.: Design of software systems based on AD. Ann. CIRP
40(1), 16570 (1991)

39. Arsenyan, J., Bykzkan, G.: Modelling collaborative software development using
axiomatic design principles. IAENG (2009)

40. Varkoi, T.: Process assessment in very small entities-An ISO/IEC 29110 based
method. In: 7th International Conference QUATIC. IEEE (2010)

	An Axiom Based Metamodel for Software Process Formalisation: An Ontology Approach
	1 Introduction
	2 Background
	2.1 Process Metamodeling
	2.2 Ontologies

	3 Axiom Metamodel Design
	4 Ontology Based Process Metamodeling
	5 Conclusion and Future Works
	References

