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Abstract
Sugeno or Takagi–Sugeno–Kang (TSK) type fuzzy inference system ANFIS proposed by Jang and ensemble random forest 
(ERF) regression, an extension of bootstrap aggregation of decision trees, has been employed to forecast the triple targets of 
strength properties of a hydrated-lime activated rice husk ash stabilized soft clay soil. This was necessitated to deal with the 
incessant failure being recorded on flexible pavements around the world and the efforts being made to tackle the situation 
in a more smart and sustainable approach. The independent variables of this model protocol were the HARHA—hydrated-
lime-activated rice husk ash, w

L
—liquid limit, w

P
—plastic limit, I

P
—plasticity index, w

OMC
—optimum moisture content, 

A
C
—clay activity, �

max
—maximum dry density, while CBR—California bearing ratio, UCS

28
—unconfined compressive 

strength at 28 days curing and R—resistance value were estimated and employed as the targets (dependent variables). The 
natural clayey expansive soil used for this research work was investigated through preliminary experiments and classified as 
A-7–6 group according to AASHTO. It exhibits a very high plasticity index with high clay content, hence needed modifica-
tion to be rendered as a foundation material. The soil was treated with varying percentages of HARHA, and the effect on the 
consistency limits, compaction, CBR, UCS, and R-value was studied. These observed values gave rise to 61 datasets. The 
observed datasets were deployed on the learning capacity of ANFIS and ERF regression to proposed models for the targets. 
The outcome of the results showed that both the models presented a close correlation between the parameters used in the 
model execution. Evaluation of the models was performed using a variety of statistical errors, Kendall and Spearman’s rank 
correlations. The results of ERF regression outclasses ANFIS model yielding a 100% coefficient of determination (R) for the 
triple targets. The performance evaluation and validation tests show that the coefficient of determination was more than 0.94 
with minimized errors. It was concluded that ERF regression and ANFIS learning techniques are viable smart approaches 
to forecasting engineering problems for a more sustainable design and performance evaluation.

Keywords  Smart computing · Ensemble random forest (ERF) regression and adaptive neuro-fuzzy inference system 
(ANFIS) · Unconfined compressive strength (UCS) · California bearing ratio (CBR) and resistance value (R) · Soft clay 
soil (SCS) · Hydrated-lime-activated rice husk ash (HARHA) and HARHA-stabilized soft clay soil (HSSCS)

1  Introduction

The adaptive neuro-fuzzy inference system (ANFIS), which 
was proposed by Jang, is a Sugeno or Takagi–Sugeno–Kang 
(TSK) type fuzzy inference system, which incorporates the 
ANN principles (Sugemo 1985; Venkatesh and Bind 2020). 

It is a hybrid evolutionary model forecasting system, com-
prising the algorithms of fuzzy and ANN (Jang 1993). There 
are two main limitations of this type of modeling: (1) The 
models formulated by ANFIS are complex in the viewpoint 
of considered membership functions and “if–then” rules 
which form the final output takes, (2) they do not adapt and 
train to a stochastic situation (Mazari and Rodriguez 2016; 
Panahi et al. 2020). On the other hand, random decision for-
est or simply random forest (RF) is an ensemble technique 
of machine learning deployed for classification and 
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regression by constructing multitudes of decision trees at the 
time of training and outputting the outcome that is the mode 
or means prediction in the class of the individual trees. It is 
a flexible algorithmic technique that produces good results 
most of the time without hyper-parameter tuning (Sharma 
2020). To deal with the complexity of geo-construction 
behavior of problematic soils, binder materials, and the 
blend of soils and cementing materials are simplified 
approaches to design (Cabalar et al. 2011). Certain empirical 
and semi-empirical approaches are based on the available 
data alone to determine the structure, validity, and applica-
tions of the model. The techniques, known as Adaptive 
Neuro-Fuzzy Inference System (ANFIS) and Random Forest 
(RF), seem to be suited with success to model complex prob-
lems in materials, geotechnical and geo-environmental engi-
neering where the relationship between the model variables 
is unknown. An ANFIS model brings together the elemental 

and individual representation of fuzzy logic (FL) system 
with the learning ability of Artificial Neural Networks 
(ANNs), while RF builds multiple decision trees and merges 
them into one, to get a more accurate and reliable prediction. 
This adds additional randomness to the model while the 
trees are being grown. With the advancement of recent arti-
ficial intelligence (AI) techniques, ANFIS and RF algo-
rithms have been recently deployed in the diverse fields of 
engineering to model the behavior of systems thereby 
recording successful results. In geotechnical and geo-envi-
ronmental systems particularly, ANFIS was applied by 
Cabalar et al. (2011) in conducting an overview of its appli-
cations in geotechnical engineering, by Erdirencelebi and 
Yalpir (2011) in the prediction of anaerobic digestion efflu-
ent quality, and by Jokar and Mirasi (2017) in the modeling 
of unsaturated soils shear strength. Also, this evolving field 
of ANFIS has been applied by Karaboga and Kaya (2019) 
as a comprehensive review; Mohammed et al. (2020) to pre-
dict shallow foundation settlement quantification; Panahi 
et al. (2020) to predict spatial landslide susceptibility by 
applying various metaheuristic algorithms; Venkatesh and 
Bind (2020) to model the shear strength characteristics of 
the soil. It is observed that no recent works have been carried 
out with ANFIS on the mixture experiments of HARHA 
based soil stabilization. The above exercise which deployed 
the use of ANFIS showed relatively higher correlations that 
can be useful in the design and monitoring of those systems. 
However, ANN and FL were also explored in their function-
alities to predict various systems in geo-environmental engi-
neering applications. These included; prediction of UCS of 
the treated expansive soil by backpropagation algorithms of 
ANN (Salahudeen et al. 2020), modelling of swelling poten-
tial of quicklime-activated rice husk ash treated soft soil by 
FL method (Alaneme et al. 2020a), modeling volume change 
of hydrated lime-activated rice husk ash-modified soft soil 
by ANN method (Alaneme et  al. 2020b), comparative 
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Fig. 1   Particle size distribution curve of clayey soil and rice husk ash

Fig. 2   Morphology of silica-
rich RHA
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modeling of strength properties of hydrated lime-activated 
rice husk ash-modified soft soil by ANN and FL methods 
(Alaneme et al. 2021), the prediction of UCS and CBR of 
treated sulfate silty sand with applications to deep soil mix-
ing using ANN (Ghorbani and Hasanzadehshoiili 2018) and 
the prediction of pavement roughness using ANN (Mazari 
and Rodriguez 2016). These show that ANN and FL in their 
individual applications have been pronounced in the field of 
soil properties modification for sustainable construction 
while however, the use of ANFIS in this field has not been 
well utilized to simulate the behavior of soil in blends of 
cementitious materials. Other fields in engineering have also 
found the application of ANFIS very useful. For instance, in 
the field of electronic engineering, mobile learning was pre-
dicted with the use of ANFIS (Al-Hmouz et al. 2012) and in 
the field of agriculture, a model for the prediction of 

moisture diffusivity and specific energy consumption of 
potato, garlic, and cantaloupe drying under convective hot 
air dryer was developed with great success. ANFIS was 
applied to simulate the response of the model footing sub-
jected to vertical centered and eccentric loads. The results 
of their study encourage the use of ANFIS in supporting the 
optimization of model testing program. Gokceoglu et al. 
(2004) constructed a Neuro-Fuzzy model for the prediction 
of deformation modulus of rock masses. Kayadelen et al. 
(2009) studied the friction angle using soft computing meth-
ods, as a primary requirement for more reliable design of 
geotechnical structures (i.e., foundations, roads, embank-
ments, and excavation, slopes, and liner systems for the solid 
waste). They also developed two ANFIS models, which were 
found to be able to learn the complex relationship between 
the basic soil properties (e.g., percentage of fine grains, 

Fig. 3   Morphology of expan-
sive soil

Fig. 4   Typical architecture of two-input ANFIS model
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Fig. 5   Flow diagram of ANFIS 
modelling

Fig. 6   Sugeno-FIS model
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liquid limit, and bulk density) and frictional angle. The 
results obtained from the developed ANFIS models devel-
oped showed satisfactory agreement with the experimental 
results. Rangel et  al. (2005) presented an alternative 
approach to evaluating tunnel stability during construction 
using a Neuro-Fuzzy system. Rangel et al. (2005) verified 

the validity and efficiency of the model developed by con-
sidering two examples of actual tunnels. Conversely, RF has 
also being applied in the field of geotechnical engineering 
with overwhelming success. According to Puri et al. (2018), 
the relationships between in-situ density using SPT N-value, 
compression index using liquid limit and void ratio, and 
cohesion and frictional angle using SPT N-value also were 
developed. Because of the linearity of the model parameters 
relationship, mean absolute error was used to evaluate the 
accuracy of the developed model. The results from this work 
showed that the predicted and measured parameters are in 
close correlation with a coefficient of determination of about 
0.988 with very minimal error. Also, the undrained shear 
strength (USS) of soil was forecasted by the random forest 
technique by Pham et al. (2020) with success. In this study, 
multiple predictors were studied experimentally on 127 soil 
samples from the USS model was developed. The perfor-
mance and accuracy of the model showed close correlation 
between predicted and measured parameters with nonlinear-
ity error, RMSE of 0.48, and coefficient of determination of 
0.87. The results of both ANFIS and RF learning techniques 
from the literature showed a better approximation than the 
other widely used techniques. None of the above-mentioned 
pieces of literature was able to forecast models of CBR, 
UCS, and R of an expansive soil treated with activated ash 
for a more sustainable and green earthwork construction and 

Table 1   Setting parameters for the ANFIS models

Parameter Setting

Sampling
 Training record 85
 Validation/testing 36

General
 Type Sugeno
 And method Prod
 Imp method Prod
 Or method Probor
 Agg method Sum
 Defuzzification method Whatever

FIS properties
 FIS type Sub-clustering
 Training FIS method Hybrid
 Error tolerance 0
 Epochs 50

Fig. 7   Architecture of the proposed model
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infrastructural performance evaluation, hence the focus of 
this research work is on the smart model’s development for 
a robust geotechnics design, construction and performance 
monitoring employing the learning abilities of adaptive 
neuro-fuzzy inference system (ANFIS) and RF. To achieve 
this, HARHA—hydrated-lime-activated rice husk ash, w

L

—liquid limit, w
P
—plastic limit, I

P
—plasticity index, w

OMC

—optimum moisture content, A
C
—clay activity, and �

max

—maximum drydensity were estimated and employed as 
predictors (independent variable) while, CBR-California 
bearing ratio, UCS

28
-unconfined compressive strength at 

28 days curing and R-resistance value were estimated and 
employed as the targets (dependent variables).

2 � Materials and methods

2.1 � Materials

Soft expansive clay soil with the following properties; per-
centage passing 0.075 mm size sieve, 45%, natural moisture 
content, 14%, liquid limit, 66%, plastic limit, 21%, plasticity 
index, 45%, swelling potential, 23%, AASHTO classifica-
tion, A-7–6, maximum dry density, 1.25% at an optimum 
moisture content of 16% with a high degree of expansion 
was used in this research work. The above characteristics 
show that the soil is expansive, weak, highly plastic, and 
requires modification to be suitable as a foundation mate-
rial. Hence, rice husk was collected from rice mills, and 
burnt to derive RHA. Meanwhile, to further enhance the 

Fig. 8   Random forest (RF) 
method flowchart (Puri et al. 
2018)

Fig. 9   Ensemble learning 
method (Pham et al. 2020)
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pozzolanic properties of RHA, hydrated-lime was used to 
achieve hydrated-lime-activated rice husk ash (HARHA). 
The HARHA was utilized in varying percentages to modify 
the expansive soil and tests were conducted to produce val-
ues for the model. The size distribution and morphology of 
the soil and the rice husk ash are presented in Figs. 1, 2, and 
3, respectively.

It can be seen in Fig.  2 that RHA, exhibits gel-like 
porous-valve structure at a magnification level of 100 µm. 
Additionally, the presence of bigger voids could be observed 
in the SEM micrograph, which illustrates the light-weight 
structure and porous structure of the agricultural waste. 
Similarly, the SEM image in Fig. 3 depicts a laminar struc-
ture with dispersive, larger, and thinner clay platelets. The 
smectites are seen to conform plate-like structures with the 
presence of thin hairline cracks. Additionally, the aggregates 
are mostly arranged in a face-to-face contact style in Fig. 3.

2.2 � Methods

ANFIS learning algorithm and ensemble RF regression 
was employed in the modeling exercise with seven predic-
tors; HARHA—hydrated-lime-activated rice husk ash, w

L

—liquid limit, w
P
—plastic limit, I

P
—plasticity index, w

OMC

—optimum moisture content, A
C
-clay activity, �

max
—maxi-

mum dry density and three targets,i.e., CBR-California 
bearing ratio, UCS

28
—unconfined compressive strength 

at 28 days curing and R—resistance value. Various experi-
ments on the treated expansive soil like the Atterberg limits, 
compaction, CBR, UCS, and R-value tests were conducted 
to produce 61 datasets.

2.2.1 � Overview of ANFIS

Figure 4 represents the typical architecture of ANFIS work-
ing on two “if–then” rules. It is a type of ANN that is based 
on Takagi–Sugeno fuzzy inference system (FIS). Hence, a 
combination of FIS with ANN reduces the limitations of 
ANN approach. Each node in the first layer (layer 1) has 
a membership function (MF), which carries the degree of 
satisfaction of inputs according to the quantifier (low, aver-
age, high). The nodes in the second layer (layer 2) produce 
firing strengths, which are normalized in the consequent 
layer. Finally, the strength of all incoming signals is calcu-
lated as the output (layer 5). The current study employed 
a hybrid model for training FIS. FIS was generated using 
a subtractive-clustering method due to the large variance 
among the datspoints. In addition, Gaussian type of mem-
bership function was used. The step-wise procedure of the 
ANFIS modeling is presented in Fig. 5. This figure presents 
the step-by-step flow of prediction activities in the intelligent 
protocol for an ANFIS operation.

Table 2   Setting parameters for ERF regression

Parameter Setting

Sampling
 Training record 121
 Validation/testing 121

General
 Type Regression
 Sampling type Automatic
 Number of folds 5
 Number of trees 100
 Criterion Least square
 Maximum depth 10

Table 3   Statistical functions for 
input and output parameters

Parameters Minimum Maximum Mean Median Standard 
deviation

Skewness Kurtosis

Input parameters
 HARHA 0 12 6 6 3.51 0 − 1.2
 wL 27 66 47.99 49 11.5 − 0.12 − 1.25
 wp 12.8 21 17.2 17.7 2.41 − 0.06 − 1.24
 lp 14 45 30.8 31 9.14 − 0.144 − 1.24
 WOMC 16 19 18 18.2 0.76 − 0.94 0.24
 Ac 0.6 2 1.34 1.4 0.39 − 0.2 − 1.17
 δmax 1.25 1.99 1.68 1.69 0.24 − 0.16 − 1.4

Output parameter
 CBR 8 44.6 24 22.8 11.74 0.29 − 1.17
 UCS 125 232 172.8 172 31.65 0.26 − 1.03
 R 11.7 27 20.5 20.9 4.48 − 0.43 − 0.79
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Fig. 10   Distribution histogram for input (in blue) and output (in green) parameters

Table 4   Pearson correlation 
matrix for inputs and out 
parameter (CBR)

HARHA wL wp lp WOMC Ac δmax CBR

HARHA 1
wL − 0.99724 1
wp − 0.98926 0.991515 1
lp − 0.99652 0.999411 0.986472 1
WOMC 0.201388 − 0.1435 − 0.17491 − 0.1348 1
Ac − 0.99388 0.997543 0.984584 0.998142 − 0.12039 1
δmax 0.985771 − 0.98176 − 0.97696 − 0.98026 0.23936 − 0.97417 1
CBR 0.991609 − 0.99425 − 0.98026 − 0.99514 0.097679 − 0.9951 0.969326 1
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Table 5   Pearson correlation 
matrix for inputs and out 
parameter (UCS)

HARHA wL wp lp WOMC Ac δmax UCS

HARHA 1
wL − 0.99724 1
wp − 0.98926 0.991515 1
lp − 0.99652 0.999411 0.986472 1
WOMC 0.201388 − 0.1435 − 0.17491 − 0.1348 1
Ac − 0.99388 0.997543 0.984584 0.998142 − 0.12039 1
δmax 0.985771 − 0.98176 − 0.97696 − 0.98026 0.23936 − 0.97417 1
UCS 0.990886 − 0.99098 − 0.97628 − 0.99206 0.134931 − 0.99283 0.967127 1

Table 6   Pearson correlation 
matrix for inputs and out 
parameter (R)

HARHA wL wp lp WOMC Ac δmax R

HARHA 1
wL − 0.99724 1
wp − 0.98926 0.991515 1
lp − 0.99652 0.999411 0.986472 1
WOMC 0.201388 − 0.1435 − 0.17491 − 0.1348 1
Ac − 0.99388 0.997543 0.984584 0.998142 − 0.12039 1
δmax 0.985771 − 0.98176 − 0.97696 − 0.98026 0.23936 − 0.97417 1
R 0.984407 − 0.9721 − 0.96953 − 0.97003 0.363941 − 0.96588 0.972762 1

Fig. 11   Parametric study of CBR using ERF regression
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2.2.2 � ANFIS model setting parameters

The model was based on Sugeno-FIS fed with seven inde-
pendent variables as depicted in Fig. 6. This depicts the 
computer–human interface that allows the inputs and out-
puts operations that give rise to the forecasting of the tar-
get parameters. The setting parameters of the ANFIS are 

listed in Table 1. It can be seen that 70% of the total data 
set was used for training the model, while 30% of the data 
was equally divided among testing and validation data sets. 
The analysis was carried via fuzzy logic toolbox of MAT-
LAB R2020b. 50 iterations were used for all three models 
while training FIS. Figure 7 presents the architecture of the 

Fig. 12   Comparative analysis of HARHA contribution as compared to a wL, b wp, c lp, d WOMC, e Ac and f δmax for CBR
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proposed model showing the number of membership func-
tions (MFs) in modeling.

2.2.3 � Ensemble RF regression overview

Ensemble learning combines the predictions from multiple 
machine learning algorithms into one to make more per-
fect forecasting or models than any individual model. The 
ensemble approach employed in the random forest learn-
ing algorithm utilizes the growing tree of the RF into the 
assembled algorithm to improve the performance and accu-
racy of the base algorithm (Pham et al. 2020). The RF trees 
and the ensemble learning method are shown in Figs. 8 and 
9. These machine figures show the iterative operations and 
steps involved in making a decision that best fits the target 
prediction depending on the trees’ performance.

2.2.4 � ERF regression setting parameters

Unlike the ANFIS model, a complete data set was used for 
training and validation of the model using five (5) numbers 
of folds. A sampling type was kept automatic. Several itera-
tions were carried out varying the number of trees from 100 

to 300 with an increment of 50, but no significant improve-
ment in the model was observed; hence, final results were 
reported on basis of 100 numbers of trees as depicted in 
Table 2. The process developed for random forest regression 
is provided in supplementary data.

2.3 � Experimental database

The extensive laboratory testing of 121 specimens for each 
output parameter (CBR, UCS, and R) were conducted with 
variation in input parameters as presented in Table 3. The 
distribution histograms were plotted for the input and output 
parameters, as shown in Fig. 10. A slight or no skewness was 
observed in both types of parameters used. The essential 
statistical functions have been listed in Table 3, depicting 
the satisfying values of skewness and kurtosis.

Fig. 13   Parametric study of UCS using ERF regression
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3 � Results and discussion

3.1 � Pearson’s correlations

According to previous studies, the current research employed 
Pearson correlation coefficients as presented in Tables 4, 5, 
and 6 to measure the linear relationship between the input and 
output parameters (Adler and Parmryd 2010; Benesty et al. 

2008; Benesty et al. 2009). The use of HARHA influenced 
the values of CBR, UCS, and R almost in a similar manner. 
The CBR value depicted a strong positive linear relationship 
with the addition of HARHA. CBR seems to unaffected in 
contrast to OMC. Moreover, the maximum dry density signif-
icantly influenced the value of CBR, thus depicting a strong 
positive relationship. A similar type of trend was observed 
for the value of UCS and R values as well.

Fig. 14   Comparative analysis of HARHA contribution as compared to a wL, b wp, c lp, d WOMC, e Ac and f δmax for UCS
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3.2 � Parametric study

3.2.1 � California bearing ratio (CBR)

The individual effect of input parameters in CBR values was 
investigated from both models. ERF regression was primar-
ily used to see the effect of each input in predicting the CBR 
results, whereas, the surface results achieved from ANFIS 
model were used to investigate the contribution of HARHA 
as compared to other inputs. It is clear from Fig. 11 that the 
percentage of HARHA linearly increased the CBR value as 
evidence for the Pearson correlation matrix. OMC (up to 
17.5%) initially increased the CBR and then start decreasing 
(Yadu et al. 2011; Brooks 2009). The maximum dry density 
also linearly increased the value of CBR. The random tree 
generated for CBR via ERF regression is provided in sup-
plementary data. A similar pattern of results was obtained 
from surface generated via ANFIS model for CBR as shown 
in Fig. 12.

3.2.2 � Unconfined compression strength (UCS)

The random trees generated for the UCS model are pro-
vided in supplementary data. The results obtained from 
ERF regression revealed that UCS linearly increased with 
the increase of HARHA and maximum dry density, whereas 
OMC initially increased and then declined the UCS value. 
The plastic index has a negative influence on compres-
sion results (Fig. 13). The 3-D plots of HARHA relative 
to remaining attributes revealed enhanced contribution of 
HARHA relatively (Fig. 14).

3.2.3 � Resistance values (R)

Random trees generated for R model are provided in sup-
plementary data. A similar pattern of impacting inputs was 
recorded for R values as manifested in Fig. 15. The relative 
contribution of HARHA reflected more contribution as com-
pared to other attributes (Fig. 16).

Fig. 15   Parametric study of R using ERF regression
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3.3 � Performance evaluation of models

The statistical results used for the evaluation of the ANFIS 
models are listed in Table 7. The coefficient of determina-
tion (R2) for all the three models is more significant than 

0.94 representing the close agreement of the experimental 
results to the predicted values. The other functions such as 
mean absolute error (MAE) (Willmott and Matsuura 2005; 
Willmott et al. 2009), relative squared error (RSE), root 
mean squared error (RMSE) (Iqbal et al. 2020), relative 
root mean square error (RRMSE), performance indicator (ρ) 

Fig. 16   Comparative analysis of HARHA contribution as compared to a wL, b wp, c lp, d WOMC, e Ac and f δmax for R 
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(Babanajad et al. 2017), and objective function OBF were 
also used for the model evaluation. The values of RSE are 
almost zero for the training data sets of all the three models. 
The values of MAE manifest an error of less than 0.5% of 
the target values. The mathematical equations of the statisti-
cal evaluation functions are presented as Eqs. 1–7.
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Table 7   Calculation of statistical parameters for performance evalua-
tion of the proposed ANFIS models

Data set Statistical evalu-
ation

CBR UCS R

Training set RSQ 0.999922 0.9997 0.999909
RMSE 5.118456 13.34563 4.558767
MAE 0.088974 0.362986 0.040364
RSE 9.82E-07 1.17E-05 3E-06
RRMSE 0.195371 0.074931 0.219358

Testing set RSQ 0.989268 0.999600 0.846968
RMSE 4.020516 12.373348 4.448637
MAE 0.509516 0.289150 0.695923
RSE 0.038275 0.001042 0.617788
RRMSE 0.24285 0.080667 0.232981

Validation set RSQ 0.942248 0.999500 0.596443
RMSE 1.197683 1.197683 1.197683
MAE 0.83023 0.289150 1.352781
RSE 0.294606 0.004327 17.47836
RRMSE 0.056882 0.007146 0.058156

Table 8   Objective functions of the proposed ANFIS models

Data set CBR UCS R

Training set 0.999961 0.037468 0.109681
Testing set 0.99462 0.043979 0.121325
Validation set 0.970694 0.003602 0.032814

Table 9   Calculation of statistical parameters for performance evalua-
tion of the proposed ERF regression models

Model Statistical parameter Training set CoV ( ±)

CBR Root mean squared error 0.265 0.048
Absolute error 0.197 0.045
Relative error 0.87% 0.08%
Normalized absolute error 0.021 0.007
Root relative squared error 0.024 0.007
Squared error 0.072 0.024
Correlation 1 0.000
Squared correlation 1 0.000
Spearman rho 1 0.000
Kendal tau 0.999 4.995

UCS Root mean squared error 1.001 0.238
Absolute error 0.681 0.128
Relative error 0.38% 0.05%
Normalized absolute error 0.027 0.007
Root relative squared error 0.033 0.006
Squared error 1.047 0.487
Correlation 0.999 0.000
Squared correlation 0.999 0.000
Spearman rho 0.998 0.003
Kendal tau 0.987 0.010

R Root mean squared error 0.093 0.013
Absolute error 0.072 0.011
Relative error 0.37% 0.06%
Normalized absolute error 0.020 0.003
Root relative squared error 0.022 0.002
Squared error 0.009 0.002
Correlation 1 0.000
Squared correlation 1 0.000
Spearman rho 1 0.000
Kendal tau 0.997 0.002
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All the statistical error evaluation functions satisfied 
the performance of the three models. The proximal values 
of OBF to zero reflect that the models are not overfitted 
(Table 8).

The ERF regression models for triple targets were evalu-
ated with the above-mentioned statistical evaluations with 
additional checks of Spearman’s rho and Kendall’s rho 
(Table 9). The evaluation of ERF regression models depicted 
a more accurate prediction of experimental results as com-
pared to ANFIS models. For the CBR and R models, the 

correlation and squared correlation are exactly 1 while for 
the UCS model it is 0.999. It can also be seen that the coef-
ficient of variation of the errors is also very small.

3.4 � Comparison of experimental and predicted 
results

Figure 17 represents the tracing of model predictions in 
comparison to experimental results for ANFIS and ERF 
regression models. Both types of intelligent models have 

Fig. 17   Comparison of experimental and predicted trends using ANFIS model (a), (c), (e) and EFR regression model (b), (d), (f) for CBR, UCS, 
and R, respectively
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Fig. 18   Error analysis of ANFIS model (a), (c), (e) and EFR regression model (b), (d), (f) for CBR, UCS, and R, respectively

closely followed the experimental trend. The validation set 
of ANFIS models have relatively more deviation as com-
pared to the training states. The error analysis of two types 
of models is illustrated in Figure. The maximum absolute 
error for CBR models is observed to be 1.6% and 0.8% for 
ANFIS model and ERF regression model, respectively. The 
maximum error ordinate in case of UCS model is more in 

ERF regression, whereas, R model has maximum error ordi-
nate in case of ANFIS model. For the training set, error in 
ANFIS-CBR value reaches a maximum of 0.4%, while in 
testing and validation sets, it is recorded as 1.6%. Similarly, 
the error in case of ANFIS-UCS model, a peak of 3.2 was 
recorded In the case of resistance values, a maximum error 
ordinate of 2.4 was observed (Fig. 18).



	 Multiscale and Multidisciplinary Modeling, Experiments and Design

1 3

4 � Conclusions

The California bearing ratio (CBR), unconfined compressive 
strength (UCS), and resistance value (R) have been mod-
eled employing the learning techniques of Sugeno or Tak-
agi–Sugeno type fuzzy inference system ANFIS and ensem-
ble random forest (ERF) regression. This was achieved with 
61 datasets from experimental results and on seven inde-
pendent variables and three targets. From the current study, 
the following have been concluded:

•	 The expansive soil used in this exercise was classified 
to belong to A-7–6 group by AASHTO classification. 
Besides, it exhibits a very high plasticity index with high 
clay content. The soil has percentage particle passing 
sieve no 200 as 45%.

•	 The rice husk ash was activated with hydrated lime to 
generate HARHA.

•	 The soil was treated with HARHA in increasing propor-
tions by weight of dry soil and the effect on the other six 
predictors were monitored and recorded. The effect of the 
addition of HARHA on the targets was also recorded.

•	 The observed values from both targets and predictors of 
the soft clays were tabulated as the datasets and were 
deployed to the learning abilities of both ERF regression 
and ANFIS to proposed models.

•	 The results of the models’ performance evaluation and 
validation show that there was close agreement between 
the parameters of the exercise, their agreement between 
the measurement parameters, and the modeled values 
with a correlation of more than 0.94.

•	 The evaluation of models using a variety of stati-
cal checks reflected that ERF regression model excels 
ANFIS models of target strength characteristics more 
precisely.

•	 It was also concluded that the learning algorithms of 
ANFIS and ERF regression are viable forecasting tech-
niques for a smart and more sustainable design and per-
formance determination of geotechnical infrastructures.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s41939-​021-​00092-8.
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