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ABSTRACT

Adolescent Idiopathic Scoliosis (AIS) is a 3D spinal deformity characterized by curvature and
rotation of the spine. Markerless surface topography (ST) analysis has been proposed for diag-
nosing and monitoring AlS to reduce the X-ray radiation exposure to patients. This method cap-
tures scans of the cosmetic deformity of the torso using visible, radiation-free light. The
asymmetry analysis of the torso, represented as a deviation contour map with deviation patches
outlining the areas of cosmetic asymmetries, has previously been shown to predict the severity
and progression of the condition in comparison with radiographs, by using classification trees.
While the classification results were promising, it was reported that some mild curves were erro-
neously diagnosed. Furthermore, this approach is highly sensitive to threshold values selected in
the decision trees. Therefore, this study aims to define a custom Neighbourhood Classifier algo-
rithm for AIS classification to improve the accuracy, sensitivity, and specificity of predicting curve
severity and curve progression in AlS. Curve severity was predicted with 80% accuracy (sensitiv-
ity = 81%; specificity = 79%) for thoracic-thoracolumbar curves and 72% (sensitivity = 93%;
specificity = 53%) for lumbar curves. This represents an improvement over the previous method
with curve severity accuracies of 77% and 63% for thoracic-thoracolumbar and lumbar curves,
respectively. Additionally, curve progression was predicted with 93% accuracy (sensitivity =
83%); specificity = 95%) representing a substantial improvement over the previous method with
an accuracy of 59%. The current method has shown the potential to further reduce radiation
exposure for AIS patients by avoiding X-rays for mild and non-progressive curves identified
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Introduction

Spinal deformity is associated with cosmetic abnor-
mality, difficulty in health-related quality of life, and
can result in impairment such as difficulty breathing
in the most severe cases (Liu et al. 2001; Tones et al.
2006). Adolescent idiopathic scoliosis (AIS) is a fre-
quent form of such deformity (Rogala et al. 1978)
which requires repetitive monitoring using X-rays
(Weinstein et al. 2008). The Cobb angle is measured
on radiographs to document the location and the
severity of curves (Thulbourne and Gillespie 1976).
This approach has two primary limitations: first, X-
ray radiation has harmful effects, including an
increased risk of cancer for this adolescent population
(Ardran et al. 1980; Levy et al. 1996) and second, the
Cobb angle is a two-dimensional measurement of a
three-dimensional deformity (Duval-Beaupere et al.
1984; Thulbourne and Gillespie 1976). To reduce

radiation exposure to patients, researchers are investi-
gating the use of surface topography (ST) to assess
the posture and torso shape. Of particular interest are
the recent uses of the Microsoft Kinect'™ system to
acquire posture of subjects (Diego-Mas and Alcaide-
Marzal 2014; Dutta 2012). Castro et al. (2017) utilized
the Kinect™ system to assess the tendency of normal
subjects to present scoliosis like asymmetries. Our
team has used a system of four cameras to acquire ST
data of the full torso and developed a markerless ST
technique with the purpose of evaluating the patient’s
torso asymmetry. The proposed ST monitoring strat-
egy suggests that patients presenting with either mild
(Cobb angle < 25°) or non-progressive (ACobb angle
(ACA) < 5° increase) curves could avoid an X-ray
since the typical standard of care for these patients
involves only observation or no change in treatment,
respectively. The ST analysis technique presented in
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our previous work showed the potential to eliminate
X-rays for some patients (Komeili et al. 2014,
2015a, 2015b).

The cosmetic deformity associated with AIS
involves torso asymmetry. A person with no spinal
curvature is approximately symmetric across the mid-
sagittal plane, which means that the person’s torso
and its reflection along this plane are almost perfectly
aligned (Ho et al. 2015). However, for a person with
an asymmetric torso, the sagittal plane is no longer a
plane of symmetry. Our method takes advantage of
the best plane of symmetry identification method
introduced by Hill et al. (2014) to assess the deform-
ity of the scoliotic spine. The best plane of symmetry
is roughly aligned with the midsagittal plane; how-
ever, the actual plane is determined by minimizing
the sum of distances between the patient’s torso and
its bilateral reflection (Komeili et al. 2014). The asym-
metry is then illustrated using a deviation contour
map plotted on the patient’s torso. The effects of the
spinal curvature are visualized in terms of dense col-
our areas called deviation patches containing many
points whose colours represent the distance between
the original and reflected torsos, depicting both areas
of protrusion or depression relative to the other side
(Komeili et al. 2014). The maximum and root mean
square of these deviations are computed as asymmetry
parameters (MaxDev and RMS, respectively). These
asymmetry parameters have been compared with the
Cobb angle measured in the corresponding region of
the torso to create decision trees predicting curve
severity on a given test day and progression between
consecutive examinations (Komeili et al. 2014, 2015b;
Ghaneei et al. 2018).

Decision trees were used to classify the curve
severity (mild or moderate/severe) and to evaluate
clinically ~significant progression of the curves
(ACA >5°) through one time interval (Komeili et al.
2015b). The results were promising for curve severity
classification especially in detecting moderate/severe
patients (CA >25°; sensitivity = 95%, specificity =
35%) (Ghaneei et al. 2018). However, the previous
work had several limitations. Some mild curves were
erroneously diagnosed indicating that the method
showed high sensitivity and low specificity.
Furthermore, the decision tree analysis is oversensitive
to threshold values selected. In other words, a minor
change in one variable leads to major changes in the
subtree below or even may destabilize the tree
(Rokach and Maimon 2015). Threshold values can be
controlled to achieve the highest possible sensitivity
to moderate/severe cases, which however may reduce

the specificity by identifying mild patients as moder-
ate/severe. The other significant drawback of the deci-
sion tree analysis is that in defining the classification
trees it was assumed that as the asymmetry parame-
ters increase, the Cobb angle also increases. However,
it will be shown in this study that as the RMS
increases, the MaxDev increases while the Cobb angle
fluctuates within a wide range. Consequently, this
assumption may result in the misclassification of the
patient status.

To overcome the limitations of decision tree ana-
lysis, an appropriate classification model is sought to
relate the surface topography parameters and the Cobb
angle, which in general exhibit lack of correlation. The
first classification rule was proposed by Fisher in 1936
in statistical classification literature, after which other
classification models were proposed and applied
(Raudys 2001). The k-nearest neighbour (k-NN) algo-
rithm is one of the simplest machine learning algo-
rithms where input parameters from a certain number
(k) of the closest data points within a Training Group
are mapped to an output through a systematic classifi-
cation or regression process (Altman 1992). The output
of the classification is a class generated from the k-
neighbours (Everitt et al. 2011). The current study aims
to use the k-NN method for classifying AIS patients
based on their ST asymmetry parameters in terms of
curve severity and curve progression to reduce the
errors of such classification efforts observed when using
decision trees (Ghaneei et al. 2018).

Methods
Data acquisition

ST scans and radiographs of 128 AIS patients
recruited from the scoliosis clinic were used in this
study. Patients included in the study had an age range
of 10 to 18years (14.4 + 1.8 years) with a mean Cobb
angle of 26.5° (from 10° to 46°). 100 patients (78%)
were female and 28 (22%) were male. The sex distri-
bution amongst the participants is representative of
the prevalence of scoliosis in the larger population as
the sex ratio from age 10 onward is reported at 6:1
(females:males)(Trobisch et al. 2010). Follow-up scans
of 95 patients were available in a 1year + 3 month
interval. Both baseline and follow-up data were used
in the curve severity analysis, which resulted in 176
thoracic/thoraco-lumbar (T-TL) curves and 167 lum-
bar (L) curves, including patients with multiple
curves. To monitor curve progression from baseline
to follow-up, 95ST and radiograph pairs with a total
of 134 curves were used.
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Figure 1. Deviation contour map.

The raw ST data was obtained by a standard scan-
ning procedure. Images were acquired from the front,
back, left and right of the patients with four VIVID
910 laser scanners (KONICA MINOLTA Sensing
Inc.) in the clinic on the same day as their radio-
graphs (Komeili et al. 2014). After merging the ST
data to create the full 3D model of the patient in
Geomagic Control (3D System Corporation, CA,
USA), the torso was isolated by cropping the frame
and unnecessary parts such as the lower extremities,
head, and arms (Komeili et al. 2014). The full 3D
torso was duplicated and mirrored along the sagittal
plane. Then the original torso and its reflection were
aligned such that the deviations between correspond-
ing points were minimized using the closest point
approach that is built-in the Geomagic software (Hill
et al. 2014). The misalignment between the two torsos
was visualized in the deviation contour map plotted
on the torso, which indicate areas of asymmetry
(Komeili et al. 2014). The threshold between normal
and abnormal deviations was 9.33 mm if the ST scan
had a maximum deviation greater than 9.33mm
(Ghaneei et al. 2018), otherwise the threshold of
3mm was used as suggested by Komeili et al. (2015a,
2015b) (see Figure 1). Blue areas indicate that the ori-
ginal torso is outside of the reflected torso, i.e. ori-
ginal torso covers the reflected torso, and red areas
indicate that the original torso is inside of the
reflected torso. The shades of blue and red (asym-
metry patches) illustrate the areas of deviations corre-
sponding to the level of the existing scoliosis curves.
The maximum distance between the original torso
and its reflection was recorded as the MaxDev and
the root mean square of all the deviations within each
patch was recorded as the RMS according to the

following equations:

MaxDev = Max (Deviation;) i=1,2,3...,n (la)

n D iati 2
RMSZVZMi:I,z,s...,n (1
i=1 n

where, n is the number of points within the deviation
patch under analysis. The ST scan of a patient’s torso
was divided into two parts. The lower one-third part
of the torso was considered the lumbar area (L) and
the upper two-thirds was considered the thoracic/
thoraco-lumbar area (T-TL). The asymmetry parame-
ters were classified as L or T-TL according to the
location of the asymmetry patch from which they
were extracted. To study the curve progression of
those patients who had ST data at a follow-up visit,
the differences of the MaxDev and RMS from baseline
to  follow-up computed, ie. ARMS
and AMaxDev.

were

Data analysis
Preliminary data analysis

All the curves in each set were ordered according to
increasing RMS and were given an identifier called
curve ID. Preliminary studies on data were performed
by plotting charts for asymmetry parameters and
Cobb angle across the curve IDs (see Figure 5). The
correlation between parameters was examined
through linear trend lines plotted on the charts along
with corresponding coefficients of determination (R*)
n
> i)’
R=1-1 (2)

i—y)*

1

Where 5, =1%"" | y; is the mean of observed data
and f; is the corresponding point at the fitted
trend line.

Classification algorithms

Traditional neighbourhood classifier. The traditional
neighbourhood classification method (Altman 1992)
will be introduced, in general. This method consists
of two phases, namely training and classification. In
the training phase, all the features (independent and
dependent parameters) of the existing data points are
stored in a group, called the Training group. Next, in
the classification phase, a new data point can be cate-
gorized based on the most frequent dependent
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parameter in the Training group who has the smallest
difference with the independent parameters. To calcu-
late this difference, Euclidean Distances (Eq. 3)
between the new data point and all of the Training
group’s members are first computed using the values
for each independent parameter. Then, the data
points within the Training set are ranked in ascending
order based on their respective distances. Next, the
first k numbers of ranked data points are collected as
neighbours of the new data point to subsequently
determine the probability of the output class accord-
ing to the neighbourhood labels (Figure 2).

Arcidean = | (51=91)° + (K2=92)2 + -+ (Su—n)?
(3)

Custom neighbourhood classifier. The neighbour-
hood classifier model developed and used in this
study was unique because it had no specific parame-
ters fitted through a formal data model training pro-
cess. The training dataset was memorized in its
entirety and used by the model when subsequently
deployed for predictive purposes. The precision of the
model lay in exposing it to a rich training set, i.e.,
one that had a good mix of instances - fairly bal-
anced representation from each output class. The
uniqueness in approach used in the nested neighbour-
hood algorithm, mainly lay in the fashion in which
classification was done.

When a trained nested neighbourhood classifier
model is exposed to a new case that needs to be clas-
sified, it determines the data instances that are closest
to this new case, from the dataset that it memorized
from the training process. These instances that are
closest to the new case are referred to as the neigh-
bours of that new case. The neighbours of the new
case are determined in a two-staged process. In the
first phase, the first attribute in the data is used to
determine the proximity of instances memorized by
the model to the new case it’s exposed to. The abso-
lute difference between values of this attribute is used
as the distance measure. The data instances that are
considered to be within pre-set thresholds in relation
to this distance measure, were considered neighbours
to this new case based on the first attribute. Then in
the second and last phase, the second attribute is used
in the computation of the distance measure. The
absolute difference in the values of the second attri-
bute of the new case and each of its neighbors (deter-
mined from the first phase), are computed. Data
instances from the neighbors determined in the first
phase, which are found to be within the thresholds

Initialize the number of neighbours
(k)to be consider in classification
computations

¥

Pick the first data point in the Testing
group

Compute the distance between the

| new data point and all of the Training

| group’s members and sort them in
ascending order

Identify the neighbours for the new
data point based on the pre-set k

Repeat for classifying
the next new data point

¥
Compute the probability of the of
the output class according to the
neighbourhood labels and select the
likely class

s

Have all new
data points been
classified?

Figure 2. A flowchart traditional

summarizing  the
Neighbourhood classification algorithm.

for the distance measure from the second attribute,
are then taken as the final/true neighbors to the new
case. In this study, thresholds were defined as a num-
ber of data instances closest to the new case, i.e. “k”.

Finally, the class to which the new case is believed
to belong is taken as the class with the highest likeli-
hood of these final neighbours - in other words, the
predominant class in the final neighbours. The name
of the classifier algorithm, i.e. nested neighborhood
classifier, comes from the fact that during the predict-
ive process, neighbors are determined in a sequential
fashion with each step making use of the previous
neighbors as input for determining the next, with the
exception of the first step which makes use of the
memorized training data.

The described algorithm was used to develop the
custom neighbourhood classifier for this study. The
independent input features in the data, i.e. RMS and
MaxDev, were utilized in a sequential order and
resulted in neighbours defined and desired instance
classifications obtained.
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Training classifier models and classification model
performance evaluation

In this study, the data points are contour patches
associated with individual curves and were randomly
divided into two groups, namely the Training group
and the Testing group using common data splitting
rules (80:20). For curve severity classification two
independent parameters, RMS and MaxDev, are used.
Hence, only two neighbourhood computation itera-
tions are required. The number of neighbours in the
first and second iterations are denoted as k; and k;,
respectively. The classification phase starts with RMS
rather than MaxDev since it has illustrated stronger
correlation with curve severity based on the prelimin-
ary analysis in this study as well as in the work of
Ghaneei et al. (2018). The output class is the curve
severity prediction (either mild or moderate/severe).
The process described is summarized in the flowchart
presented in Figure 3. Wolfram Mathematica
(Wolfram Research, Inc., Mathematica 8.0.4.0) was
used to automate this process.

For curve progression, ARMS and AMaxDev are
the independent parameters used in the first and
second classification phases, respectively, and the out-
put class is the progression status (either progression
or non-progression).

The performance of the models developed for clas-
sifications were assessed based on sensitivity, specifi-
city, and total accuracy. For curve severity, a positive
result represents a moderate/severe curve and a nega-
tive result shows mild severity. For curve progression,
a positive result indicates a progressive curve
(increase in CA >5° over the time interval) and a
negative result is a non-progressive curve (<5°). The
predicted results were based on the ST analysis and
the actual results were based on the radiographic
measures. Table 1 presents a matrix that was used to
determine the performance measures and parameters
used in the classification process.

Parametric studies for the customized k-NN
classification

The accuracy of the results from the customized k-NN
class are dependent on the number of neighbours (k)
selected for each neighbourhood (Wang et al. 2006). As
such, a parametric study was performed to establish the
appropriate number of neighbours that generates the
best results. k; and k, were each varied sequentially
from 1 to 20 and the optimal values were those that
provided the best diagnostic predictive results (sensitiv-
ity, specificity, and accuracy) (Figure 4).

v

Initialize k; and k;

v

Pick the first curve (contour patch)
in the Testing group

v

Compute the absolute distance
between the RMS of the new
> patch and all the patch in the
Training group and sortthem in
ascending order

v

Pick the first k;neighbours

v

Repeat for Compute the absolute distance
classifying the next between the MaxDev of the new
new curve patch and all the patch in the

kyneighbours, and sortthem in
A ascending order

v

Pick the first k, neighbours

v

Compute the probability of the of
the curve severity prediction
according to the k,
neighbourhood severity and select
the likely class

Have all new
data points
been
classified?

Figure 3. The customized k-NN classification algorithm for
curve severity classification.

Results
Curve severity classification

The curve parameters RMS, MaxDev, and Cobb angle
were plotted against the curve ID. Figure 5 shows a
representative plot for the lumbar curves in the
Training group and it reveals that while RMS and
MaxDev are closely related to each other, the Cobb
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Figure 4. Simplified sketch of the customized k-NN algorithm.

angle does not follow the same trend and fluctuates
within a wide range. RMS and MaxDev vary linearly
with curve ID with R? values of 0.90 and 0.85,
respectively. Conversely, the corresponding Cobb
angles vary widely with curve ID and do not follow a
linear trend (R?>=0.12).

There were a total of 176 T-TL curves and 20% of
them (35 curves) were randomly selected to establish
the Testing group while the rest (141 curves) were
considered as the Training group. The ultimate goal
of the proposed method is the proper detection of
moderate/severe patients, which is equivalent to
achieving the highest sensitivity. With this goal in
mind, the optimum values for neighbours in the first
and second iterations were found to be 3 for both (k;
=k,=3). Thus, it is only needed to consider the first
three ranked data points from the Training group and
the severity of the patient under study is decided
based on the most frequent class labels (mild or mod-
erate/severe) among such ranked data.

Of the 35T-TL curves in the Testing group, 16
were moderate/severe and 19 were mild based on
radiographic measures. Table 2 illustrates the curve
severity prediction for the curves in the Testing
group. As it can be seen the overall sensitivity is 81%
which indicates that 13/16 moderate/severe curves
were accurately classified on the basis of the ST
parameters. Moreover, 15/19 mild curves were classi-
fied correctly with a specificity of 79%. This suggests
that 79% of the mild curves could have avoided an X-
ray examination based on the algorithm introduced in

Table 1. Calculation of the accuracy, sensitivity, and
specificity.
Radiograph
+ —
Surface topography + True positive False positive
(TP) (FP)
- False negative True negative
(FN) (TN)
Accuracy Sensitivity Specificity
(TP +TN)/(TP + FN + FP + TN) TP/(TP + FN) TN/(FP +TN)

this study. Consequently, the overall accuracy in pre-
dicting the severity of T-TL curves based on this
method is 80%.

With the same procedure, 20% of L curves were
stored in the Testing group (32 curves) leaving 135
curves in Training group. The optimum values for
the number of neighbours in the first and second iter-
ations respectively were found to be k;=18 and k,=5.

Of the 32L curves in the Testing group, 15 were
moderate/severe and 17 were mild based on radio-
graphic measures. 14/15 moderate/severe curves were
correctly identified with a sensitivity of 93% (Table 2).
Furthermore, 9/17 of the mild curves were diagnosed
correctly for a specificity of 53% suggesting that more
than half of the mild curves could have avoided an X-
ray examination. The overall accuracy of the proposed
method for L curves was 72%.

Curve progression

The curve progression was studied for those patients
who have follow-up scans (134 curves) with ARMS
and AMaxDev being the independent variables.
Twenty-seven curves were included in the Testing
group and 107 curves were included in the Training
group. The optimum value for k; was found to be 17,
i.e. 17 curves with the lowest absolute difference of
ARMS with respect to the data point under study
were used. The optimum value for k, was 1, indicat-
ing that the closest neighbour in terms of AMaxDev
predicts whether the current curve experienced pro-
gression or not. 5/6 progressive curves were identified
correctly (Sensitivity = 83%) and 20/21 non-progres-
sive curves were identified correctly (Specificity =
95%) (Table 3.) The high sensitivity confirms that the
proposed method can accurately distinguish the pro-
gressive curves (low number missed) giving clinicians
confidence in the method’s ability to identify patients
who could skip radiographs without missing treat-
ment opportunities.

The capability to classify the curve severity of AIS
curves though using the customized k-NN algorithm
was compared with previous work (Ghaneei et al.
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Table 2. Severity classification results for the testing group.

Table 3. Curve progression classification results for the test-
ing group.

Radiograph Radiograph
T-TL (+) ) L (+) ()
ST (+) 13 4 ST (+) 14 8
) 3 15 ) 1 9
Accuracy Sensitivity Specificity ~ Accuracy  Sensitivity = Specificity
80% 81% 79% 72% 93% 53%

2018) in markerless ST (Figure 6). For the case of T-
TL curves, the specificity in the curve severity predic-
tion showed a substantial increase compared to the
previous work (Ghaneei et al. 2018) from 58% to
79%. However, our approach failed to distinguish
moderate/severe curves as well as the traditional clas-
sification tree with a decrease in sensitivity from
100% to 81%. The overall accuracy slightly improved
with an increase from 77% to 80%.

Considering the curve severity of L curves, we
showed an improvement in sensitivity from 87% to
93% along with an increase in specificity from 41% to
53% compared to the previous work (Ghaneei
et al. 2018).

Considering curve progression, the current method
showed a substantial improvement over the previous
work (Ghaneei et al. 2018) (Figure 7). Progressive
curves were identified with 83% accuracy, exhibiting
an increase in sensitivity from 67% with the other
method. Furthermore, the overall accuracy of the pre-
dicting curve progression significantly increased from
59% to 93%.

Discussion and conclusions

The motivation of the present study lies in the poten-
tial of classifying the severity and progression of

Radiograph
() )
ST (+) 5 1
() 1 20
Accuracy Sensitivity Specificity
93% 83% 95%

curves in AIS patients based on ST thereby potentially
reducing the use of radiographs. More precisely, the
k-NN analysis was conducted to further minimize the
risk of missing moderate/severe or progressive curves
and reduce the number of mild and non-progressive
curves misclassified while maximizing the sensitivity
compared to the classification tree analysis previously
reported in the literature (Ghaneei et al. 2018). Given
the errors in radiographic measurements, it is difficult
to define a threshold of acceptable values for specifi-
city, sensitivity, and accuracy. The method presented
here has been designed to maximize sensitivity, which
is a conservative approach meant to minimize the
number of moderate/severe or progressive curves that
would be missed.

The arbitrary lower and upper boundaries that
could have been used to define the size of a training
dataset are influenced by different factors which also
vary with context. Consequently, there are no hard
and fast rules/criteria for defining these boundaries as
universally accepted sharp thresholds using crisp val-
ues or definitive formulae. On the lower side, the
feasibility of access to abundant data affects things
while the upper side is controlled by the avoidance of
an overly fit/trained model. Some guidelines exist
within the machine learning domain that facilitate the
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Figure 6. Comparing the performance of customized k-NN with a previous study using classification tree analysis (Ghaneei
et al.2018) in prediction the severity for (a) T-TL and (b) L curves in the Testing group.

Curve Progression

100
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60
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O This study 83 95 93
Change (%) 24 67 58

Figure 7. Comparing the performance of the customized k-NN
with classification tree analysis reported in a previous study
(Ghaneei et al.2018) in predicting the progression of scoli-
0sis curves.

estimation of the size of training datasets. The three
which are popularly utilized are presented next.

There are data modellers that experiment with the
error generated by the model during the training and
predictive phases. This is referred to as a learning
curve approach and involves varying the size of the
training dataset and plotting the model’s predictive
error against the training error. The convergence of
these two errors gives insights into the appropriate
size training data to make use of. Also, there exist
rules of thumb that have been developed by those
within the machine learning domain. These provide
heuristics on the adequacy of a certain dataset size in
training a model for a particular problem (Jain and
Chandrasekaran 1982; Hastie et al. 2009). The major-
ity of these are based on the dimensionality of the
problem. An example of such a rule that is in popular
use, is one that recommends that a dataset used for

training models be no less than 10 times the number
of input dimensions in the problem. This one is
referred to as the “10x” rule. Similar heuristics also
exist which are based on the number of out-
put classes.

It is worth-noting that none of these fore-men-
tioned guidelines can be used on a “one size fits all”
basis. As such, data modellers need to approach the
problem of determining the appropriate size of train-
ing dataset with the following mind: (1) the nature of
the data - dimensionality, (2) the quantity of data, (3)
the type of model etc. In this study, a heuristic
approach that makes use of the dimensionality of the
input features was used in determining a training
dataset size. A “10x” rule applied to the 2 input fea-
tures yielded a minimum threshold requirement of 20
data instances for training. The number of instances
used for training the neighbourhood classifier in this
study were significantly higher than this thresh-
old value.

For L curve severity classification, by using the
new classification method introduced in this study,
sensitivity, which represents the probability of identi-
fying moderate/severe curves, was improved from
87% to 93% compared to when using classification
tree analysis. It should be noted that the only mis-
classification of a moderate/severe curve was specific
to the only patient with a double curve, in which the
upper curve in the T-TL area was detected correctly
as severe. In a clinical setting, the severe T-TL curve
would lead the patient to undergo further X-ray
investigation, thus the missed L curve would not have
impacted the clinical care of the patient. In a double
curve spine, having a large curvature in the T-TL sec-
tion reduces the cosmetic deformity in the lumbar
area, i.e. the asymmetry parameters corresponding to
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the L curve on the deviation contour map are smaller
than they could be if there was no T-TL curve.
Further investigation is required to study the inter-
connected effects of T-TL and L curves on a larger
sample set of patients with double curves.

Another advantage of the proposed technique is
the increase in the specificity of curve severity classifi-
cation for lumbar curves from 41% to 53%. This
increase in specificity would result in a decrease in
the number of patients with mild curves being
exposed to X-ray radiation. The corresponding
increase in sensitivity from 87% to 93% shows that
this would occur while missing even fewer moderate/
severe curves requiring the clinician’s attention. These
results substantiate the fact that the new method is
better able to diagnose L curves by improving the
overall accuracy of curve severity prediction from
63% to 72%. Hence, L curve severity can be assessed
with higher confidence.

For T-TL curve severity, the sensitivity obtained in
this study was lower than the former classification
method (81% compared to 100%). The three moder-
ate/severe curves that were inaccurately identified as
mild in the k-NN classification analysis belong to
patients with high body mass indices (BMI). These
patients had BMI > 25 which is the standard thresh-
old of overweight. Hence, this misclassification likely
resulted from a reduction in the torso asymmetry due
to the fatty tissue masking the underlying deformity.

To investigate the effect of BMI > 25, all the patients
meeting this criterion were eliminated from the dataset
and the analysis with the same features was performed
again. The sensitivity and accuracy for patients with
BMI <25 reached to 100% and 83%, respectively. In
particular, all the moderate/severe curves were success-
fully identified by the new analysis. The modified data-
set did not reveal any changes on the number of mild
misclassified curves (4 curves); however, the specificity
reduced to 67% due to the decrease in the number of
patients in the modified dataset. The results, in particu-
lar the significant improvements of sensitivity and
accuracy after excluding the subjects with BMI > 25,
suggests that excess body fat can considerably influence
the asymmetry parameters.

In a clinical setting, if radiographs were not
ordered for patients identified with a mild curve, the
classification trees presented in Ghaneei et al. (2018)
could reduce the number of X-rays by 24% (9/37)
while the customized k-NN presented here could
reduce the number of X-rays by 34% (12/37). In this
study, the k-NN classification correctly identified 55%
(12/22) of the mild patients.

Furthermore, this study proposed a new method
for monitoring AIS curves over time, which remark-
ably improved the accuracy of identifying curve pro-
gression. Only one curve was misclassified and
considered as non-progressive after the one-year fol-
low-up interval. For this curve, however, the increase
in Cobb angle was exactly equal to 5 degrees which is
on the margin between progressive and non-progres-
sive and is within the Cobb angle measurement error.
In addition, one curve was misdiagnosed as progres-
sive when the increase in Cobb angle was actually less
than 5 degrees. The increase in sensitivity from 67%
to 83% compared to the previous study by Ghaneei
et al. (2018) means fewer progressive curves would be
missed by using the customized k-NN classification
approach. The identification of non-progression
curves (specificity) also increased from 57% to 95%,
demonstrating a clear advantage of the current
method in terms of protecting patients against
unnecessary radiographs.

In a clinical setting, if radiographs were not
ordered for patients identified as non-progressive, the
customized k-NN could reduce the number of X-rays
by 74% (14/19) while the classification trees presented
in Ghaneei et al. (2018) could reduce the number of
X-rays by 42% (8/19). It is important to note that
100% (14/14) of the non-progressive patients in the
Testing group were correctly identified by k-NN while
only 57% (8/14) were identified correctly using the
classification trees (Ghaneei et al. 2018). These are
clinically important results and indicate that our mar-
kerless surface topography technique, combined with
the customized k-NN classification method is far
superior to previous methods in terms of the ability
to reduce the X-ray exposure for AIS patients.

One of the limitations of this study is that some
curves came from the same patients which may lead
to data overfitting. The results presented here can be
further validated on a larger sample of patients. In
addition, further work is required to investigate the
low specificity reported in the L curves which could
be related to the curve type of these patients. If lum-
bar curves were more often secondary than thoracic
curves, this region may require a different classifica-
tion strategy. Initial curve type Cclassification, for
example using a surface topography asymmetry classi-
fication system (Komeili et al. 2014), may be import-
ant in future attempts at further improving the
method presented here.

The devised methodology in the present work pro-
vided a substantially improved accuracy compared to
literature. Further improvements may be achieved by
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increasing the Training group size. Future work will
focus on further investigation of double curve spinal
deformities as well as patients with BMI greater than
25. Also, in future studies, BMI can be applied as an
independent variable along with RMS and MaxDev in
the analysis. We are confident that our research will
serve as a base for future studies on AIS analysis
based on ST monitoring and we have shown that this
method has the potential to significantly reduce the
number of X-rays required during clinical follow-up
of patients with AIS.
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